Our mission

To inspire our people to be The Experts in Power delivering genuine value to our customers.

We are committed to providing the best technical and commercial solution for your power needs.

- Exclusive focus on power conversion
- Worldwide sales in excess of $100 million
- Local engineering and sales support
- London Stock Exchange listed
- ISO9001 certified quality management system
- Global commitment to the environment
Having trouble keeping up with the latest standards for external power supplies such as the California Energy Commission’s (CEC) requirements for efficiency and no-load power consumption; or the implications of the 3rd Edition 60601 on Medical Safety?

Ever wondered why seemingly similar power supplies have significantly different performance and reliability characteristics?

The answers to these and many more questions can be found in this, the third edition of XP’s Power Supply Technical Guide, the culmination of many, many years experience gained by the XP Power applications team spread over three continents.

Whether you’re new to designing-in a power supply or DC-DC converter or an ‘old hand’, this book offers an invaluable resource and all the information you’ll need in one easy reference guide.

We hope you find it useful, and don’t miss the five new Technology Editorials towards the back of the guide.
Power Supply Technical Guide

Contents

Introduction to Power Conversion 1

• Introduction ... 1
• Switch Mode Power Supplies 1
• Topologies ... 2
 Isolated Fly-back Converter 2
 Forward Converter .. 3
 Two Transistor Forward Converter 4
 Half Bridge & Full Bridge Converters 5-6
 Push-Pull Converter ... 7
 Buck Converter ... 8
 Boost Converter .. 9
• Linear Power Supplies .. 10
• Distributed Power Architectures 11

Input Considerations 13

• Power Sources ... 13
 AC Power Sources ... 13
 AC Generator .. 13
 Three-phase AC .. 15
 Worldwide Voltages & Frequencies 17
 DC Power Sources ... 18
 Batteries ... 19
• Input Protection .. 22
• AC Input Current & Harmonics 28
• Real & Apparent Power ... 31
• Earthing/Grounding .. 38

DC Output Considerations 41

• Output Regulation .. 41
• High Peak Loads .. 43
• Powering Light Emitting Diodes (LED’s) 45
• Ripple & Noise .. 49
• Output Protection .. 51
• Status Signals & Controls 55
• Series & Parallel Operation 61
• Redundant Operation .. 63
Thermal Management 64
• System Cooling Fan Selection .. 64
• Cooling Power Supplies ... 67
• Cooling Power Modules ... 70
• Baseplate Cooling .. 71

Reliability 75
• Terminology .. 75
• Factors Affecting Reliability .. 77
• System Reliability .. 80

Legislation 81
• Power Supply Safety .. 81
• Medical Safety .. 84
• High Voltage Safety Testing .. 89
• Electromagnetic Compatibility (EMC) ... 91
• CE Marking ... 97
• Defense and Avionics EMC Standards ... 98
• No Load Power Consumption & Efficiency Legislation for External Power Supplies.................. 104
• Energy Efficiency of Component Power Supplies 107

Technology Editorials 109
• Technology Editorial 1. 95% High Efficiency Power Supplies 109
• Technology Editorial 2. Putting the Data into Power Supply Datasheets 115
• Technology Editorial 3. Medical Power Supplies: trends, challenges & design approaches 120
• Technology Editorial 4. Digital Signals and Controls 123
• Technology Editorial 5. Custom Power without Custom Pain 126

Further technical articles are available online at: www.xppower.com

Glossary 129
• Terms & Definitions ... 129
• Prefix Codes ... 141
• SI Unit Codes ... 142

Index 143
XP POWER
Power Supply Technical Guide 2010/11

© XP Power 2010
Edited by Gary Bocock
Issue 3
Introduction to Power Conversion

• Introduction

Electronic equipment is powered from low voltage DC supplies. The source will be either a battery, a combination of battery and DC/DC converter or a power supply converting AC mains into one or more low voltage DC supplies. Electronic components require a DC supply that is well regulated, has low noise characteristics and provides a fast response to load changes. AC power supplies, and most DC/DC converters, also provide isolation from the input to the output for safety, noise reduction and transient protection.

As electronic equipment becomes smaller and smaller, the market demands that power converters do the same. Since the introduction of switch mode techniques, this has been an evolutionary rather than a revolutionary process. Conversion efficiency has increased, materials and components allowing higher switching frequencies have become available and packaging techniques have advanced. At the same time, unit cost has fallen as sales volumes have increased. With the global market a reality, power supply systems operate from wide input ranges to cover worldwide AC mains supply variations.

There are a number of basic topologies used in power converters, which are suited to various power levels, cost criteria and performance levels.

• Switch Mode Power Supplies (SMPS)

The use of switch mode topologies has reduced the size and improved the efficiency of power supplies by increasing the frequency of operation, reducing the physical size of transformers, inductors and capacitors, and utilizing an ‘on or off’ switching element to increase efficiency. The compromises in adopting this technique are increased ripple and noise on the output DC supply and the generation of both conducted and radiated EMI which have to be managed.

As switching frequency increases, so do switching losses. This has lead to the introduction of resonant topologies, which ensure that either the voltage or the current is at zero when the switching transition occurs, almost eliminating these switching losses and allowing even higher operating frequencies. These topologies are normally referred to as Zero Voltage Switching (ZVS) or Zero Current Switching (ZCS) and they have further reduced the overall volume of power supplies, or increased power density, for a given output power.

The introduction of low voltage semiconductors and the consequent high output current demands have driven the development of synchronous output rectifier schemes, where the output diodes are replaced by power MOSFETs to reduce power dissipation in the secondary and achieve high efficiency solutions for these applications.

Resonant topologies and synchronous rectification are discussed in more detail in the technology editorials. There are a number of topologies used in switch mode converters which can be arranged in Pulse Width Modulated (PWM), Zero Voltage Switching (ZVS), Zero Current Switching (ZCS) and synchronous rectification schemes.
Introduction to Power Conversion

- Topologies

Isolated Fly-back Converter

Isolated fly-back converters are typically used in power converters up to 150 W. The topology uses only one major magnetic component, which is a coupled inductor providing both energy storage and isolation. Energy transfer to the secondary and the load occurs during the switching element off-time.

This topology provides a low cost means of converting AC to DC power due to its simplicity and low component count. The power level is restricted by the high levels of ripple current in the output capacitor and the need to store high levels of energy in the coupled inductor in a restricted volume. The fly-back converter is used in DC/DC converters but only at low power (<50 W) due to the low input voltage and high ripple currents. Waveforms above are for discontinuous mode.
Forward Converter

Forward converters are typically used in power supplies which operate in the range 100-300 W. This topology uses two major magnetic components; a transformer and an output inductor. Energy transfer to the secondary and the load occurs during the switching element on-time. Forward converters are used in both AC power supplies and DC/DC converters.
Introduction to Power Conversion

There is no energy stored in the transformer; energy is stored in the output stage of the converter in the inductor and capacitor. The output inductor reduces the ripple currents in the output capacitor and the volume of the transformer is dependent on switching frequency and power dissipation. At the higher end of the power spectrum, two transistor forward converters can be employed (see below). The two switching elements operate simultaneously, halving the voltage on each switching element and allowing the use of a device with a higher current rating.

As the power rating increases, it is desirable to utilize the transformer core more efficiently by driving it through two quadrants of its available area of operation, rather than the one utilized in forward converters. This is achieved in half bridge or full bridge converters.
Half Bridge & Full Bridge Converters

Half bridge converters are utilized in power supplies in the power range of 150-1000 W. This topology also uses two major magnetic components, a transformer and an output inductor, but in this case the transformer core is better utilized than in a forward converter. The switching elements operate independently, with a dead time in between, switching the transformer primary both positive and negative with respect to the center point.
Introduction to Power Conversion

Energy is transferred to the secondary and the load during each switching element on-time by utilizing a split secondary winding. This has the added benefit of doubling the switching frequency seen by the secondary, helping to reduce the volume of the output inductor and capacitor required and halving the voltage seen by each switching element. In higher power solutions a full bridge converter can be employed (see below).

Full Bridge Converter
This topology will provide double the output power for the same primary switching current, but increases the complexity of switching element drive circuits, compared to the half bridge. Half bridge and full bridge converters are used in AC input power supplies. There is also a trend to utilize this topology in low voltage bus converters.

In DC/DC converters a similar topology to the half bridge is employed, called a push-pull converter. As the voltage applied to the switching element is typically low, this arrangement is designed to halve the primary switching current in each switching element, otherwise operation is similar to a half bridge.
Introduction to Power Conversion

Buck Converter

Buck converters are used to step down the input voltage to produce a lower output voltage. This basic topology is widely employed in Non Isolated Point of Load (NIPOl or POL) converters used to produce locally regulated supplies in distributed power architectures.

During the switching element on-time the current through the inductor rises as the input voltage is higher than the output voltage and the inductor acquires stored energy. When the switch opens the current freewheels through the diode and supplies energy to the output.
Boost Converter

Boost converters are used to step up the input voltage to produce a higher output voltage. They can be used to boost DC supplies but are most commonly used in AC input power supplies above 100 W configured to provide active Power Factor Correction (PFC). The following are diagrams of a standard boost converter and a boost converter in a PFC application.

Energy is stored in the inductor during the switching element on-time, the voltage across the inductor is added to the input voltage and transferred to the output capacitor during the switching element off-time. Practically, output voltages of up to five times the input voltage can be achieved.
Introduction to Power Conversion

In active PFC configurations, the pulse width of the switching current is controlled so that the average input current to the boost converter is proportional to the magnitude of the incoming AC voltage. This forces the input current to be sinusoidal. The input filter removes the switching frequency ripple. See page 30 for more information.

- Linear Power Supplies

Linear power supplies are typically only used in specific applications requiring extremely low noise, or in very low power applications where a simple transformer rectifier solution is adequate and provides the lowest cost. Examples are audio applications (low noise) and low power consumer applications such as alarm panels (low cost).

Linear Power Supply

The 50/60 Hz mains transformer reduces the voltage to a usable low level, the secondary AC voltage is peak-rectified and a Series Pass Element (SPE) is employed to provide the necessary regulation. The benefits of this solution are low noise, reliability and low cost. On the downside, these units are large, heavy and inefficient with a limited input voltage range.
Distributed Power Architectures (DPA) deliver power utilizing multiple power converters throughout the system. Typical components found in traditional DPA and intermediate bus DPA systems are outlined in the diagram (next page).

The power supply provides the primary point of isolation between AC mains high voltage and the end user. The type of power supply used in distributed power applications is typically referred to as front end or rectifier. Front end power supplies and rectifiers have similar functions, such as hotplug/hot-swap capability, redundant operation, blind-mate connection and various status and control options.

Front ends are most often used in enterprise, network and data storage equipment. Front ends provide a regulated bus voltage throughout all regions of the system. Redundancy is usually gained by supplying multiple input sources, such as AC mains, UPS systems and/or generated power and multiple power supplies. This approach ensures that the loss of one input source or power supply does not result in a catastrophic system shut-down. The DC bus voltage in this type of system is regulated and should never swing by more than ±10% from the power supply's 48 VDC output setting. For this reason, intermediate bus converters which have a narrow input range of only 42-53 VDC may be used in this type of system.

Rectifiers are most often used in telecommunications equipment where redundancy is gained by backing up the DC bus voltage with batteries. A rectifier must be capable of driving both the system load and battery recharging load requirements. The bus voltage in a rectifier power system can vary more widely due to changes in the status of the batteries during charge and discharge modes. For this reason, traditional intermediate bus converters that have a narrow input range of only 42-53 VDC may not be used in this type of system.
Introduction to Power Conversion

Distributed Power Architecture

A Feed
- Connected to AC Mains

B Feed
- Connected to UPS

C Feed
- Connected to AC Generator

Power supply
- Converts AC to DC bus voltage (typically 12 or 48 VDC)

Batteries (optional)

** Passive Backplane/Motherboard**
- Distributes DC bus voltage to multiple locations in the system

Isolated DC/DC Converter(s)
- Provides required isolation from the bus voltage and regulates voltage(s) required at the card/daughterboard. Isolation may not be required if the 48 V supply is SELV, but may be needed for efficient power conversion

Traditional

Intermediate Bus

Intermediate Bus Conversion
- On the backplane/motherboard, isolation and regulation to a low voltage (typically 5 or 12 VDC) is achieved with the intermediate bus converter(s) and then distributed throughout the system

Non-Isolated DC/DC Converter(s)
- Isolation from an SELV bus voltage is not a requirement at the card/daughterboard, so non-isolated DC/DC converters provide all required regulation at the point-of-load

Passive Backplane/Motherboard
- Distributed DC bus voltage to multiple locations in the system

Non-Isolated DC/DC Converter(s)
- Post regulates additional voltages from local isolated converters to new voltage(s) as required at the point-of-load

LOAD

Distributed Power Architecture
Input Considerations

• Power Sources

Sources of electricity (most notably rotary electro-mechanical generators) naturally produce voltages alternating in polarity, reversing positive and negative over time, known as alternating current (AC). AC power is typically derived from the local power company grids, either as single or three-phase source. This is then converted to DC within the majority of electronic equipment.

AC Power Sources

In applications where electricity is used to dissipate energy in the form of heat (heaters, light bulbs), the polarity or direction of current is irrelevant so long as there is enough voltage and current to the load to produce the desired heat (power dissipation). However, with AC it is possible to build electric generators, motors and power distribution systems that are far more efficient than a DC equivalent. For this reason, AC is used predominantly in high power applications.

AC Generator

In an AC generator, a magnetic field is rotated around a set of stationary wire coils, the resultant AC voltage/potential produced as the field rotates being in accordance with Faraday’s Law of electromagnetic induction. The basic operation of the AC generator, also known as an alternator, can be seen below:
The polarity of the voltage across the wire coils reverses as the opposite poles of the rotating magnet pass by. Connected to a load, this reversing voltage polarity creates a reversing current direction in the circuit.

The frequency of the resultant wave form is dependent on the speed of the rotating magnetic field.

\[
\text{Frequency} = \text{No. of cycles/second} = \text{No. of revolutions/second}
\]

AC generators and AC motors are generally simpler in construction than DC generators and DC motors. AC generators & motors also benefit from the effect of electromagnetism, also known as mutual induction, whereby two or more coils of wire are positioned so that the changing magnetic field created by one induces a voltage in the other.

The diagram below shows two mutually inductive coils. Energising one coil with AC voltage creates an AC voltage in the other coil. This is a transformer:

The transformer’s ability to step AC voltage up or down gives AC an advantage unmatched by DC in power distribution. When transmitting electrical power over long distances, it is more efficient to do so with higher voltage and lower current allowing smaller diameter wire with lower resistive power losses, then to step the voltage back down and the current back up for industry, business or consumer use.
Transformer technology has made long-range electric power distribution practical. Without the ability to efficiently step voltage up and down, it would be prohibitively costly to construct power systems for anything but close-range use.

Three-phase AC

The power delivered by a single-phase system pulsates and falls to zero during each cycle, whereas the power delivered by a three-phase circuit also pulsates, but never to zero. In a balanced three-phase system, the conductors need be only about 75% the size of the conductors for a single-phase two-wire system of the same kVA rating.

If three separate coils are spaced 120° apart, the three voltages are produced 120° out of phase with each other, when the magnetic field cuts through the coil.
There are two basic three-phase connections used:

Star or Wye Connection

Connecting one end of each of the coils together as shown right makes a star or wye connection. The phase voltage (or phase to neutral voltage) is the voltage measured across a single coil. The line voltage (phase to phase voltage) is measured across two coils.

In a star or wye-connected system, the line voltage is higher than the phase voltage by a factor of the square root of 3 (1.732).

\[
V_{\text{line}} = V_{\text{phase}} \times \sqrt{3} \\
V_{\text{phase}} = V_{\text{line}} / \sqrt{3}
\]

This is a 4-wire plus earth system.

Delta Connection

The three separate coils are connected to form a triangle in a delta-connected system, which derives its name from the fact that a schematic diagram of this connection resembles the Greek letter delta (Δ).

In this configuration the line voltage and phase voltages are the same.

\[
V_{\text{line}} = V_{\text{phase}}
\]

However, the line current is higher than the phase current by a factor of the square root of 3 (1.732). The reason for this difference in current is that current flows through different windings at different times in a three-phase circuit.

At times, current will flow between two lines only, at other times current will flow from two lines to the third.
Single-Phase Voltage and Frequency

Europe and most other countries in the world use a mains supply voltage which is nominally between 220 and 240 volts. In Japan and in most of the Americas the voltage is nominally between 100 and 127 volts. New buildings in the USA are supplied with two phases and neutral to provide a higher phase to phase voltage where required for higher power appliances.

Switch mode power supplies are typically designed for global use and cover an input range of 90-264 VAC to cater for the various nominal supplies and their tolerance.

Three-Phase Voltage and Frequency

Although single-phase power is more prevalent, three phase supplies are the power of choice for many applications. As previously discussed, power stations supply three-phase electricity and it is often used in industrial applications to drive motors and other devices.

Three-phase electricity is a smoother form of power than single or two-phase systems allowing machines to run more efficiently and extending their lifetime.

220 – 240 VAC single phase supplies are derived from 400 VAC three phase systems and 100-127 VAC single phase supplies from 200 VAC three phase systems. In the USA there is also a 480 VAC three phase system used for some high power applications which results in a nominal 277 VAC single phase supply often used for applications such as street furniture & street lighting.
Input Considerations

DC Power Sources

DC power sources are produced by rectifying an AC source, an electrochemical reaction in the form of a battery or by a DC generator.

There is a move in data centers to DC power systems, where the incoming utility supply is rectified to a nominal 400 VDC bus which is then distributed around the facility. This eliminates the first stage of power conversion within the individual computers and servers resulting in significant component count reduction, increased efficiency and reliability, improved ride-through characteristics and lower running costs.

DC generators work on the principle of electromagnetic induction, their construction is more complicated than the AC equivalent. In a DC generator, the coil of wire is mounted in the shaft where a magnet would be found in an AC generator, and electrical connections are made to this spinning coil via stationary carbon brushes contacting copper strips on the rotating shaft. This is necessary to switch the coils changing output polarity so that the external circuit sees a constant polarity.

The simplified example above produces two pulses of voltage per revolution of the shaft, both pulses in the same polarity. For a DC generator to produce constant voltage there are multiple sets of coils making intermittent contact with the brushes.
Batteries

There are four battery chemistries in common use; Valve Regulated Lead Acid (VRLA), Nickel Cadmium (NiCad), Nickel Metal Hydride (NiMH) & Lithium (Lithium Ion & Lithium Polymer).

Valve Regulated Lead Acid

Valve Regulated Lead Acid (VRLA) batteries are widely used in industrial control applications, Uninterruptible Power Supplies (UPS), alarm & security systems and telecommunications to provide standby power in the event of mains failure. These batteries are simple to charge and maintain, requiring a charger with a constant current characteristic of typically 0.1 times capacity (0.1C) for the initial charge period followed by a constant voltage of 2.25 V/cell to complete the charge and trickle charge thereafter, the constant voltage trickle charge is connected indefinitely to compensate for self discharge. This is known as a float charge system and for best performance the voltage applied should be temperature compensated at 3 mV/ºC per cell decreasing above 20 ºC and increasing below 20 ºC.

VRLA batteries are often boost or equalize charged at the higher voltage of 2.4 V/cell for an initial period to speed the charging process and equalize the cell voltages to restore full capacity, this is a three step charging regime as shown in the diagram below.

![Three step charge curve](image)

Manufacturer’s capacity, discharge and service life data is generally given for temperatures in the range of 20 – 25 ºC. At lower temperatures the capacity is significantly reduced to around 80% at 0 ºC. At higher temperatures the service life is significantly reduced to around 40% at 40 ºC and as low as 10% at 50 ºC. In extreme cases high temperatures can result in thermal runaway resulting in excess gas production and battery swelling which is irrecoverable.

Nickel Cadmium and Nickel Metal Hydride

Nickel Cadmium (NiCad) is an older technology typically used in portable applications and has the advantages of high power density and high current discharge rates 20 to 30 times capacity (20-30C) typical but has the disadvantage of memory effect when the battery is not fully cycled losing capacity. This can be overcome but requires a complex charging regime to achieve a recovery.

Nickel Metal Hydride (NiMH) is a more recent evolution of NiCad and does not suffer with the same memory effect when used in a non cycled system.
Input Considerations

Both of these chemistries are best charged using a delta peak charging regime. The battery is charged with a constant current up to 5 times capacity (5C) and the voltage monitored. The voltage on the cell will rise for the majority of the charge period. During the charge period the charge power is applied to the battery for a period then removed to monitor the cell voltage then reapplied. This is repeated until the battery unit achieves 95% of charge when the cell voltage will drop slightly; this is the knee point. The charger will recognise this and revert to constant voltage trickle charging to achieve the final 5% of charge; the advantage is that the battery is fast charged to 95%.

NiCad and NiMH batteries can also be charged at 0.1C permanently as the battery is able to dissipate the excess charge as heat without damage to the cell structure.

![NiCad/NiMH Battery Charging Characteristics](image)

Lithium

Lithium batteries are also typically used in portable applications and have a higher power density than VRLA or Nickel batteries, they are also lighter than VRLA batteries. There are many chemistry derivatives including lithium iron phosphate, lithium manganese, lithium manganese cobalt and lithium titanate, all have similar properties.

<table>
<thead>
<tr>
<th></th>
<th>Li-Ion</th>
<th>NiCad</th>
<th>NiMH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy Density Whr/kg</td>
<td>90</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>Energy Density Whr/l</td>
<td>210</td>
<td>100</td>
<td>140</td>
</tr>
<tr>
<td>Operating Voltage</td>
<td>3.6</td>
<td>1.2</td>
<td>1.2</td>
</tr>
<tr>
<td>Lifetime (approx. cycles)</td>
<td>1000</td>
<td>1000</td>
<td>800</td>
</tr>
<tr>
<td>Self Discharge</td>
<td>6%/month</td>
<td>15%/month</td>
<td>20%/month</td>
</tr>
</tbody>
</table>

A stringent charging regime is required for lithium technologies as incorrect charging may result in irreversible damage to the battery or, in the worst case, a fire which is virtually inextinguishable as the battery has both the fuel and an oxidant to supply oxygen.

Initially these battery chemistries could only be charged at a maximum rate of 1C and discharged at no more than 5C. At the time of writing this has improved to charge rates up to 3C and discharge rates up to 35C.
The general charging requirements for a lithium Ion (Li-Ion) or Lithium Polymer (Li-Po) batteries are given below.

The battery must never be discharged below 3.0 volts per cell as this will cause irreversible damage. The battery is charged at a constant current of 1C until the cell voltage rises to 4.25 volts then at a constant voltage until the current drawn falls to 0.05C. At this point it is deemed to be 98% charged. From this point on a trickle charge is applied at 0.05C indefinitely. The trickle charge applied is a constant voltage 0.05 V above the battery terminal voltage, current limited to around 100 mA.

Li-Ion Battery Charging Characteristics

During charging certain parameters are monitored to avoid damage or fire risk. These include over voltage, over temperature & charging balance of series strings. If these parameters are found to be outside specification then the charger is shut down.

Smart battery packs are available with built in protection. Many also include a serial interface which reports a fuel gauge indicating charge status, charge cycles, cell temperature, serial number and capacity.

Due to inconsistencies in manufacture a string of cells may each have slightly different capacity. When they are charged as a complete string the charge state of each will also differ. This imbalance can be corrected by cycling the battery through 2 or 3 balance charges to equalise the cell voltages. Balance charging is effected by the addition of a voltage monitor on each of the battery cells via a balance connector on the battery pack. The monitoring circuit measures the cell voltage and dissipates excess charge as an individual cell becomes charged allowing other cells in the string to catch up. If this is not done imbalance becomes more noticeable and the capacity of the battery is reduced.
Input Considerations

• Input Protection

Input Current Protection

Input protection is implemented in power supplies and DC/DC converters to ensure safe operation. The input fuse fitted within a power supply is not intended to be field-replaceable, it is rated such that only a catastrophic failure of the power supply will cause it to fail. It will not be cleared by an overload as the power supply will have some other form of overload protection, usually electronic. The fuse will often be soldered into the PCB rather than being a replaceable cartridge type fuse.

The power supply fuse is listed as a critical part of the safety approval process and is used to ensure that the power supply does not catch fire under a fault condition. If the fuse clears the most likely cause is that the converter has failed short circuit presenting a short circuit to the mains supply. In this event the fuse will clear very quickly.

As previously discussed, the fuse in the power supply is not intended to be field-replaceable, and should only be replaced by competent service personnel following repair. When using a component power supply, there will be additional mains wiring within the enclosure before the power supply and its fuse. This is where an additional fuse or circuit breaker as a protection device is fitted to ensure that the wiring and associated components do not present a hazard.

When the end equipment is tested for safety it will also go through fault analysis to ensure that it will not present a fire hazard under a fault condition. If a fault were to occur many hundreds of Amps can flow causing wires to heat up very quickly, causing noxious fumes from the melting plastic insulation and creating a potential fire hazard.

Input Voltage Protection

The input of the equipment may be subjected to a number of transient voltage conditions. These differ between AC & DC systems.

AC Systems
- Switching transients
- Lightning strikes
- Spikes

DC Systems
- Engine cranking transients
- DC line transients
- Reverse polarity

The AC system transients are catered for in the EN61000-4-x series of standards. The DC transients relate to DC systems in vehicle, traction and telecommunications applications. See page 27.
Inrush Current

An AC mains system is a low impedance power source meaning that it can supply a large amount of current. In a power supply, at the instant of switch-on, the reservoir capacitor is discharged giving the appearance of a short circuit. Without any additional precautions the input current will be very large for a short period of time until the capacitor is charged.

Precautions are taken to limit the inrush current as this will cause disturbances on the supply line and could damage any switches or relays and nuisance-blow fuses or circuit breakers. Fuses and circuit breakers need to be of a size and characteristic to cope with this inrush current without nuisance tripping. The most commonly used technique, due to its simplicity and low cost, is the fitting of a Negative Temperature Coefficient (NTC) thermistor. These devices have a high resistance when cold and a low resistance when hot. Inrush current is often specified from a cold start and at 25 °C due to thermal inertia and the time it takes for the thermistor to cool down following switch off of the power supply. In some applications, in order to solve this problem and improve efficiency, the thermistor is shorted by a relay following the initial inrush. There are other techniques using resistors and triacs but these are more complex and less common. A typical value of inrush current in an AC power supply is 30-40 A lasting 1-2 ms but can it be as high as 90-100 A in some products. There is a trade off to be made between lower inrush current and higher efficiency due to the power dissipated in the thermistor.

The same principles apply to DC circuits; the source impedance is very low, only this time it is a battery and not the mains supply. As with the AC circuit the peak will be over within a millisecond or so.

Batteries have short circuit ratings measured in thousands of Amps and when the reservoir capacitor is discharged there appears to be a short circuit. Once again, the protection devices need to be sized to be able to cope with this. Inrush current levels tend to be higher, as is the nominal current, due to the efficiency trade-off. Often the inrush current will be specified as a multiple of the nominal current.
Sizing of Fuses & Circuit Breakers

So that the rating of the fuse or breaker can be determined, the nominal input current of the power supply needs to be established. If the application has more than one power supply or other mains powered equipment these will need to be taken into account.

To determine the input current, we need first to determine the input power and, in AC systems, remember to take into account the power factor.

\[
\text{Input Power} = \frac{\text{Output Power}}{\text{Efficiency}}
\]

\[
\text{Input Current} = \frac{(\text{Input Power} / \text{Input Voltage})}{\text{Power Factor}}
\]

Choose fuse or CB rating at least \(1.5 \times \text{Input Current} - \text{Time Lag}\)

It is advisable to use a time lag fuse or breaker to avoid nuisance tripping on start up. The \(1.5 \times \text{input current rating}\) is to overcome the ageing effects of fuses.

Fuses are rated FF, F, T, TT (ranging from super fast to long time lag). For power supplies it is recommended that T or TT types are used.

Circuit breakers are A-K (very fast to long time delay). For power supplies, C or above would be recommended.

Fuse Characteristics

Fuses are thermal devices and do not react instantly, even fast-blowing types. It is important to look at the actual rupture current of a given fuse. See the graph to the right.

Looking at the curve for a 1 A fuse, it can be seen that it will not clear at 1 A or 2 A. It would take 0.5 seconds before the fuse clears at 3 A. It would need 20 A to clear this fuse in 3 ms. This should be taken into account when ensuring nuisance tripping does not occur.

Looking at the 5 A fuse, it would take 80 ms to clear the fuse at a current of 30 A.
Circuit Breakers - Thermal

Circuit breakers are available in two basic technologies, thermal and magnetic. The thermal types have similar characteristics to a fuse and it is necessary to ensure there is adequate time lag to prevent nuisance tripping.

In the case opposite, for the 0.05-2.7 A breaker at 10 times the rated current, it would take 1 second for the break to occur. The temperature derating of the device should also be considered to ensure that it complies with the environmental parts of the specification.

If a battery source is being used, it is also important to check the short circuit rating of the battery and the interrupt capacity of the circuit breaker. Because it has contacts, excessive current may cause it to weld shut rather than break.

Circuit Breakers – Magnetic

The other type of circuit breaker is a magnetic type, which is far more accurate and is manufactured to allow for different delay times, allowing accurate selection of a device suitable for the application.

The important issues are the same; ensuring that there is adequate time delay to prevent tripping during the initial inrush and the breaking current if it is being used in a battery application.
Input Considerations

Input Voltage Transient Protection

Input overvoltages include spikes, surges and fast transients. These are created by the switching of other loads (spikes), motors and fluorescent lamps (fast transients) and surges, which are created by lightning strikes. These transients are regulated to the following standards:

- EN61000-4-4: Electrical fast transient/burst immunity test
- EN61000-4-5: Surge immunity test

There are four levels within these standards, plus one user-defined level. The four levels are detailed in the table below.

<table>
<thead>
<tr>
<th>EN61000-4-4</th>
<th>EN61000-4-5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Common Mode</td>
</tr>
<tr>
<td>Level 1</td>
<td>0.5 kV</td>
</tr>
<tr>
<td>Level 2</td>
<td>1 kV</td>
</tr>
<tr>
<td>Level 3</td>
<td>2 kV</td>
</tr>
<tr>
<td>Level 4</td>
<td>4 kV</td>
</tr>
</tbody>
</table>

The standards differ in that EN61000-4-4 specifies a short pulse with little energy while EN61000-4-5 specifies a longer pulse, which contains substantially more energy.

The devices listed below are the major components used to protect electronic equipment from damage caused by these transients. These components have varying response times and energy absorption capabilities and are usually used in combination to provide effective protection.

- **Transorb**: Semiconductor device
 - Sharp characteristics
 - Fast response low energy

- **MOV (Metal Oxide Varistor)**: Voltage dependent resistor
 - Soft characteristics
 - Medium response high energy

- **GDT (Gas Discharge Tube)**: Gas-filled spark gap
 - Slow response very high energy
 - Used in conjunction with MOV

- **Active electronic protection**: Used for vehicle traction applications
 - Linear regulator or open circuit
The diagram on the right shows a typical application of a GDT and MOVs providing a high level of protection. The MOV prevents the fuse blowing when the GDT fires and the two MOVs are in series across line and neutral providing protection against differential disturbances.

In DC applications, such as vehicle, train and traction applications, none of the devices listed previously are adequate, due to the magnitude and duration of the transients which contain higher levels of energy. Practical solutions include the addition of a regulator prior to the DC/DC converter or a circuit to disconnect the DC/DC converter during the transient using capacitors to provide hold-up during the disconnect period.

In the diagram to the right, the regulator is controlled so that its output voltage does not exceed the input voltage of the DC/DC converter.

The disconnect method works in a similar way but with the regulator being replaced with an electronic switch, such as a MOSFET. In this method, the switch is opened when the input voltage is too high. The output is held up using additional capacitance either at the input of the DC/DC converter or at the load.

Reverse Polarity Protection

For reverse polarity protection there are two commonly-used techniques; shunt and series diodes.

In the shunt technique the fuse blows if the input is reverse-connected, as the diode is forward biased. This will prevent damage to the DC/DC converter but means that the fuse will need to be replaced. In this configuration the diode must be sized so that it will not fail before the fuse ruptures.

The second option is to implement a series diode which, in the event of reverse connection, will simply be reversed biased. The fuse will not blow and no damage will occur. The disadvantage of the method is that the diode is permanently in circuit causing inefficiency and raising the minimum input operating voltage of the DC/DC converter solution. These effects can be reduced by replacing the diode with a MOSFET in critical applications.
Input Considerations

- **AC Input Current & Harmonics**

Power Supply Harmonic Distortion

As a result of the peak rectification techniques used in power supplies, harmonic currents are generated. To limit these harmonics, legislation has been introduced. The relevant standard is EN61000-3-2 for equipment with an input current ≤16 A per phase.

EN61000-3-2 establishes four classes of equipment, each with their own limits for harmonic emissions.

- **Class D** - T.V.'s, personal computers & monitors consuming ≤600 W
- **Class C** - Lighting equipment
- **Class B** - Portable tools
- **Class A** - Everything else

Equipment Classes A & B have absolute limits for harmonics whatever the input power. Class C equipment has limits expressed as a percentage of the 50 Hz current consumed and for Class D equipment the harmonic current limits are proportional to the mains power consumed. Equipment categorized in Classes C & D will normally require a power supply incorporating active power factor correction.

In the diagram below right, the incoming AC voltage wave form is identified as V LINE, the dotted line represents the rectified AC voltage following the bridge rectifier.

The bulk capacitor is charged during the conduction angle and is discharged slowly by the power stage of the power supply (VCAP). As soon as the input sine wave voltage falls below the bulk capacitor voltage then the diode in the bridge rectifier is reverse biased and no current flows until the incoming rectified sine wave is once again higher than the bulk capacitor voltage. The conduction angle is typically 2-3 ms.

The complex input current waveform generates the harmonics which are of concern to the power generator. The harmonics contribute to the apparent power. Real power and apparent power are discussed later in more detail. The current wave form shown will result in a power factor of around 0.5 - 0.6.

The ideal input current wave form is labelled 1.
Why is Harmonic Distortion a Problem?

The utility provider must supply the voltage and all of the current, even though some of the current is not turned into useful output power – see the section entitled Real and Apparent Power on page 31. The provider has no means of charging for the extra current because the power is charged in kWh.

The combined effect of millions of power supplies is to clip the AC voltage because all of the current is drawn at the peak of the sine wave. Power conductors must be sized to carry the extra current caused by the low power factor. Neutral conductors can overheat because they are typically not sized to carry all of the harmonic currents which do not exist for high power factor loads.

Solutions for Power Supplies

In order to meet the legislation for harmonic distortion there are two main solutions available for power supplies:

Passive Power Factor Correction

Passive power factor correction typically involves the addition of a line frequency inductor or resistor into the AC line. The effect of the inductor is to squash the current wave shape as the inductor is a reactive component which resists change in current. The effect of the resistor is to reduce the peak current.

The smoother the current wave-shape the less harmonic distortion will be present.

This is a very simple solution which has some advantages and some disadvantages. It is not really practical in power supplies above 300 W due to the size of the components required to provide adequate inductance at 50/60 Hz and to keep the resistive losses low enough. This solution is not adequate in lighting, personal computing or color television applications, but is a viable solution for Class A equipment. The diagram below shows real time measurement of passive power factor correction and the harmonic current levels.
Active Power Factor Correction

Active power factor correction uses a boost converter running at high frequency to electronically control the wave-shape of the input current. The incoming AC voltage is monitored and used as a reference to determine the pulse width of each current pulse of the high frequency switched current.

The current is drawn in a series of pulses at around 100 kHz which equates to 2000 pulses per cycle of the mains voltage. The low pass EMC filter takes the high frequency element and filters it out so that the current seen by the mains supply is sinusoidal. The system regulates the DC output at approximately 400 VDC. The diagram below shows real time measurement of active power factor correction.

Comparison between Active and Passive Power Factor Correction

Passive Power Factor Correction

<table>
<thead>
<tr>
<th>Advantage</th>
<th>Disadvantage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simple</td>
<td>Heavy and bulky components</td>
</tr>
<tr>
<td>Cost effective</td>
<td>AC range switching required</td>
</tr>
<tr>
<td>Rugged and reliable</td>
<td>Low power factor</td>
</tr>
<tr>
<td>Noise (EMI)</td>
<td>Cannot use multiple PSUs in a system</td>
</tr>
<tr>
<td>Assists filtering</td>
<td></td>
</tr>
</tbody>
</table>

Active Power Factor Correction

<table>
<thead>
<tr>
<th>Advantage</th>
<th>Disadvantage</th>
</tr>
</thead>
<tbody>
<tr>
<td>High power factor >0.9</td>
<td>High cost</td>
</tr>
<tr>
<td>Low input current</td>
<td>High complexity</td>
</tr>
<tr>
<td>Universal input</td>
<td>High component count</td>
</tr>
<tr>
<td>Regulated high Voltage Bus</td>
<td>Lower calculated MTBF</td>
</tr>
<tr>
<td>Hold up time</td>
<td></td>
</tr>
<tr>
<td>Multiple PSUs can be used</td>
<td></td>
</tr>
</tbody>
</table>
• Real and Apparent Power

What is Power?

Power is simply the rate at which work is done. The more power available in a system, the more work can be completed in the same period of time. In terms of electricity, increasing power means the ability to do more electrical work (energy) in the same number of seconds, for example, running more appliances, spinning a motor faster, or running a faster CPU. Power is measured in Watts (W). One Watt equals one Joule of energy expended in one second:

$$\text{Power (W)} = \frac{\text{Work or Energy (J)}}{\text{Time (seconds)}}$$

Conversely, the amount of energy used by a device can be computed as the amount of power it uses multiplied by the length of time over which that power is applied:

$$\text{Work or Energy (J)} = \text{Power (W)} \times \text{Time (seconds)}$$

Computing electrical power can be very simple or very complicated. With direct current, power (in Watts) is just the product of the voltage (in Volts) and the current (in Amps) of the circuit:

$$P \ (W) = V \ (V) \times I \ (A)$$

More work is done when electrons push with more force (higher voltage) and when there are more of them per period of time (higher current). Since \(P = V \times I \), and \(I = V/R \), another way to express power is:

$$P = \frac{V^2}{R}$$

In a DC system power is measured and calculated as shown above. In an AC system it is more complicated because phase shift and wave form shape must be taken into consideration.

Real Power

Real, true or active power is the measurement of power dissipated in the load.

It can be shown as:

$$P \ (W) = V \ (V) \times I \ (A)$$

Real power is measured in Watts.
Input Considerations

Reactive Power

Reactive power is power which is merely supplied to the load and returned to the source, rather than being dissipated in the load.

This is caused by the reactive elements in an AC circuit, specifically inductors and capacitors which tend to charge and discharge during normal operation.

Reactive power is measured as Volt-Amps-reactive (VAr).

Apparent Power

This is the total power in a circuit at any one time. It includes both dissipated (real) and returned (reactive) power.

Apparent power is measured in Volt-Amps (VA).

The relationship between these three types of power can be described using the power triangle as shown below.

Real, reactive and apparent power are trigonometrically related to each other.

Each power type can be described as follows:

- P (real power) is the adjacent length
- Q (reactive power) is the opposite length
- S (apparent power) is the hypotenuse

In this form we can see that the opposite angle gives us the impedance of the circuit. Using the cosine of this angle provides the ‘power factor’ of the circuit.
What is Power Factor?

Power factor is a characteristic of AC circuits only. It is always a number between zero and one, the closer to one, the better the system’s power factor.

\[
\text{Power Factor} = \frac{\text{Real Power}}{\text{Apparent Power}}
\]

Using the previously discussed data, it is now possible to add in this third element to the formula:

\[
\begin{align*}
\text{Power (W)} &= \text{Apparent Power (VA)} \times \text{Power Factor (PF)} \\
\text{or} \\
\text{Apparent Power (VA)} &= \frac{\text{Power (W)}}{\text{Power Factor (PF)}}
\end{align*}
\]

Power factor is a measure of the efficiency of energy transfer from source to load. The greater the efficiency the closer to unity power factor.

If power is not being dissipated in the load but simply circulates round the reactive elements of the circuit (inductors and capacitors), then energy transfer is not as efficient and the power factor will be less than unity.

Two key elements affect the power factor of any system. These are known as phase shift and harmonics.

Effects of Phase Shift on Power Factor

To understand how phase shift affects the power factor of any system, here are a couple of practical examples:

AC Motor Load

The diagram to the right shows a simple circuit description of a motor load. The load is primarily inductive (motor windings) with a small resistive component (the resistance of the windings).

If the voltage is plotted against current in this system, two waveforms appear out of phase with each other, as shown right.

Key:

1. The voltage wave form
2. The current wave form
3. Real power
4. Reactive power

Diagram:

[Diagram showing AC motor load with voltage and current waveforms]
Input Considerations

The current waveform is lagging behind the voltage wave form. This lagging phase shift is measured as an angle. One cycle of the mains is a full 360 degrees, any difference along the horizontal axis can be shown as a phase angle measured in degrees.

This phase angle can be used to calculate the PF of the system.

While the voltage and current are in phase i.e. both positive or both negative real power is delivered. When voltage and current are out of phase then reactive power is delivered to and returned by the load.

The phasor diagram, see below, can be used to illustrate the phase relationship. This is shown static but is continuously rotating through 360 degrees.

Here, active or real power is shown on the horizontal portion of the phasor diagram, the apparent power as a lagging phasor, reactive power being shown on the vertical.

Phasor diagram of motor load

This is the origin of the power triangle discussed earlier.

If the triangle has its vertical (reactive portion) positive, then the reactive portion is capacitive. If the vertical is negative then the reactive portion is inductive.

If the angle of the opposite is 30 degrees, then the cosine of this angle will give us the power factor of this system:

\[
\cos 30 = 0.87 \text{ lagging}
\]

87% of the energy supplied by the source is being dissipated in the load. The other 13% is circulating currents not being dissipated in the load (reactive power).
AC Resistive Load

A simpler example is a resistive load on an AC supply.

Below are the circuit diagram of a resistive load and the voltage and current waveforms. There are no reactive elements, and because of this there is no phase shift between voltage and current.

The phase angle between voltage and current is zero, the two elements are in phase.

\[\cos \theta = 1 \]

Therefore the power factor of the system is unity. All of the energy supplied by the source is dissipated by the load. The energy transfer is 100% efficient.
Effects of Harmonics on Power Factor

The following diagrams show how a waveform is distorted by adding the 3rd harmonic to the fundamental.

The resultant waveform is shown below;

Any waveform that is not sinusoidal contains harmonics.

Any distortion or harmonic content will cause the power factor of the system to fall.

As with phase shift, any power not being dissipated as useful power to the load is known as reactive power.

The effects of harmonic currents within a system cause a reduction in power factor and therefore reduce the efficiency of energy transfer from source to load.
Effects of a Low System Power Factor

Both phase shift and harmonics can cause a reduction in the power factor of the system.

This reduction in power factor means that more current has to be generated at source to deliver the power to the load. This in turn means that, unless power factor correction is applied to loads, a number of problems are caused.

Power factor correction can be either passive or active. Whichever form it takes, it will be used to ensure that the amount of harmonics specifically within a system is reduced; this will increase the power factor of the system and increase the source-load energy transfer efficiency.

In phase shift applications (e.g. motor load), passive power factor correction can be applied (adding inductance or capacitance to circuit) to correct any phase shift between voltage and current. This again will increase source-load energy transfer efficiency.

Common examples of problems with low power factors within a system can be seen in the list below:

- Mains voltage distortion: Caused by harmonics which can cause problems such as light flicker.
- Oversizing of conductors: Necessary as circulating currents must also be allowed for when cable sizing.
- Overheating of neutral conductors: Caused because protection is generally in the live wire only.
- Electromagnetic load failures: Generally occur when harmonics present cause the magnetic device to heat up.
- Circuit breakers tripping: Circulating currents, due to reactive power, not considered.
Input Considerations

- **Earthing / Grounding**

Earth or Ground is a place of zero potential, a place where fault currents can be directed of sufficient capacity to enable fuses to rupture. It is usually the substance beneath our feet and we connect to this in a number of different ways.

Buildings are connected to the ground and therefore the floors on which we stand are at the same potential.

The electrical connections that come into our homes and offices need to be safe. This is why the earth connection in a domestic location is usually made to a metal pipe (generally the mains water supply) somewhere close to where it enters the ground.

The distribution transformer has an earth connection, usually in the form of a copper rod anchored in the ground.

Lightning conductors that are found on tall buildings will also be rooted in the ground, so that in the event of a lightning strike the current passes harmlessly to ground and not into the structure of the building, saving the building from damage.

![Earthing overview diagram](image)

Earthing overview
Ground Resistivity

The wetter the ground, the less resistance it will have. This is the reason buildings have their own earth connection and do not rely on the earth point at the distribution transformer.

<table>
<thead>
<tr>
<th>Type of ground</th>
<th>Ground resistivity ρ (Ωm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Range of values</td>
</tr>
<tr>
<td>Boggy ground</td>
<td>2 - 50</td>
</tr>
<tr>
<td>Adobe clay</td>
<td>2 - 200</td>
</tr>
<tr>
<td>Silt & sand-clay ground, humus</td>
<td>20 - 260</td>
</tr>
<tr>
<td>Sand and sandy ground</td>
<td>50 - 3,000</td>
</tr>
<tr>
<td>Peat</td>
<td>200+</td>
</tr>
<tr>
<td>Gravel (moist)</td>
<td>50 - 3,000</td>
</tr>
<tr>
<td>Stony and rocky ground</td>
<td>100 - 8,000</td>
</tr>
<tr>
<td>Concrete: 1 part cement + 3 parts sand</td>
<td>50 - 300</td>
</tr>
<tr>
<td>Concrete: 1 part cement + 5 parts gravel</td>
<td>100 - 8,000</td>
</tr>
</tbody>
</table>

Earthing for Safety

For an electrical system to be safe, a sufficient level of protection must be provided. This can be achieved by the use of insulation and earthing. The table below details the level of protection (LOP) provided by different types of insulation and earth.

<table>
<thead>
<tr>
<th>Abbr.</th>
<th>Earth Type</th>
<th>Level of Protection (LOP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FE</td>
<td>Functional Earth</td>
<td>0</td>
</tr>
<tr>
<td>PE</td>
<td>Protective Earth</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Abbr.</th>
<th>Insulation Type</th>
<th>Level of Protection (LOP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OP</td>
<td>Operational (Functional)</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>Basic</td>
<td>1</td>
</tr>
<tr>
<td>S</td>
<td>Supplementary</td>
<td>1</td>
</tr>
<tr>
<td>D</td>
<td>Double</td>
<td>2</td>
</tr>
<tr>
<td>R</td>
<td>Reinforced</td>
<td>2</td>
</tr>
</tbody>
</table>
For a system to be safe a total LOP of 2 must be provided.

The next table specifies the distance required between two conductors for the different types of insulation for IT and industrial applications. Basic insulation does not require such a large gap as double or reinforced and therefore provides a lower level of protection.

<table>
<thead>
<tr>
<th>Insulation Type</th>
<th>Clearance</th>
<th>Creepage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Functional</td>
<td>1.5 mm</td>
<td>3.2 mm</td>
</tr>
<tr>
<td>Basic/Supplementary</td>
<td>2.0 mm</td>
<td>3.2 mm</td>
</tr>
<tr>
<td>Double/Reinforced</td>
<td>4.0 mm</td>
<td>6.4 mm</td>
</tr>
</tbody>
</table>

The distances above are based on a 300 VAC working voltage. The working voltage is the voltage between the two circuits to be isolated. The lower the working voltage, the lower the creepage and clearance distances required.

To ensure that the insulation is correct and not damaged or manufactured incorrectly a test voltage must be applied. The table below shows the test voltages for a 300 VAC working voltage.

<table>
<thead>
<tr>
<th>Insulation Type</th>
<th>Test Voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic/Supplementary</td>
<td>1500 VAC or DC equivalent</td>
</tr>
<tr>
<td>Double/Reinforced</td>
<td>3000 VAC or DC equivalent</td>
</tr>
</tbody>
</table>

Two types of earth can be present in a system.

- **FE** – Functional Earth – This does not provide a safety function.
- **PE** – Protective Earth – This provides protection against electric shock in a class 1 system.

The diagram above represents a complete class 1 power supply. Primary to earth protection is provided by basic insulation and protective earth (LOP 2). Primary to secondary protection (240 VAC to 12 VDC) is provided by double/reinforced insulation (Total LOP 2).
DC Output Considerations

• Output Regulation

Line Regulation

Line regulation is a static performance measure of changes in output voltage due to changes of the input voltage. It defines the change in output voltage or current resulting from a change in the input voltage over a specified range and is normally expressed as a percentage.

\[
\% \text{ Line Regulation} = \left(\frac{V_{OUT}(\text{Max}) - V_{OUT}(\text{Min})}{V_{OUT}(\text{Nominal})} \right) \times 100
\]

where \(V_{OUT}(\text{Nominal}) \) is the output voltage at nominal line input voltage
\(V_{OUT}(\text{Max}) \) is the maximum output voltage measured over the specified input range
\(V_{OUT}(\text{Min}) \) is the minimum output voltage measured over the specified input range

Example: A power supply’s output voltage is nominally 5.02 V but when the AC input is varied from its minimum to maximum value the output varies from 5.015 V to 5.03 V.

\[
\% \text{ Line Regulation} = \left(\frac{5.03 - 5.015}{5.02} \right) \times 100 = 0.29\%
\]

Load Regulation and Cross Regulation

Load regulation is the static performance measure, which defines the ability of a power supply to remain within specified output limits for a predetermined load change. Expressed as a percentage, the range is dependent upon the product design and is specified in the product data sheet.

\[
\% \text{ Load Regulation} = \left(\frac{V_{OUT}(\text{Load Max}) - V_{OUT}(\text{Load Min})}{V_{OUT}(\text{Nominal})} \right) \times 100
\]

where \(V_{OUT}(\text{Nominal}) \) is the nominal output voltage
\(V_{OUT}(\text{Load Max}) \) is the output voltage at maximum output current
\(V_{OUT}(\text{Load Min}) \) is the output voltage at minimum output current

Example: A power supply manufacturer specifies that for a load change of 5% to 100% its power supply output changes from 5.05 V to 5.02 V around a nominal voltage of 5.02 V.

\[
\% \text{ Load Regulation} = \left(\frac{5.05 - 5.02}{5.02} \right) \times 100 = 0.6\%
\]

For multiple output power supplies, another factor affecting the output voltage is cross regulation. This is an extension of the load regulation test and determines the ability of all of the power supply outputs to remain within their specified voltage rating for a load current change on another output. It is calculated in the same manner as load regulation and is often specified as a percentage change in output voltage for a percentage change in another output load, e.g. V1 cross regulation = 1% per 10% change in V2.
Remote sense enables the output voltage regulation to be maintained at the load rather than at the output pins of the power supply. This is achieved by using two sense lines connected from the remote sense pins of the power supply to the load which may be located some distance from the power supply.

Remote sense can compensate for voltage drops in the order of hundreds of mV, typically a maximum of 500 mV. The sense lines (one to the load, and one return from the load) monitor the voltage at the load and regulate the power supply output, thus compensating for drops in voltage across the load cables. Remote sense is normally used when the load current varies resulting in irregular lead voltage drop. If the load is constant and the voltage drop is fixed the trim or adjustment feature can be used to compensate for the voltage drop over the load line.

The voltage drop between the power supply output terminals and load is mainly caused by the lead resistance. However, when there is substantial inductance between the load cables or circuit traces from the supply to the load, a dynamic Ldi/dt drop may be significant. This dynamic Ldi/dt drop and noise formation can be minimized by connecting a 0.1 µF ceramic capacitor in parallel with a 10 µF electrolytic capacitor at the load. Remote sense leads should be twisted to minimize noise.

If ORing diodes are used in a redundant application, remote sensing can also be used to compensate for the forward voltage drop across the ORing diodes. The forward volt drop depends on magnitude of current and the diode’s junction temperature. Trimming or adjustment can also be used to compensate for this drop, if it is a known value.

The maximum amount of remote sense voltage compensation is specified in the power supply’s data sheet. However, the raising of output voltage at the pins as the result of remote sensing and output trimming must not exceed the maximum output voltage rating.
Transient Load Response

Transient response measures how quickly and effectively the power supply can adjust to sudden changes in current demand. The figure below shows the behavior of a typical converter during a load-current transient and the resultant output voltage wave form.

The output filter of a switching regulator, excluding flyback converters, is composed of an inductor and capacitor which is a second-order lag system. Therefore, it takes a finite time to recover from load current transients and settle to its new output voltage.

The transient load response is normally specified as a maximum percentage change and recovery time of the output to a step load change, e.g. 4% maximum deviation, 500 µs recovery for a 25% step load change.

- High Peak Loads

Some power supplies specify a peak load capability to support loads that are higher than the nominal continuous power for short periods. In these applications the average power required is typically significantly lower than the peak demand.

Applications that require high peak currents include print heads, pumps, motors, and disk drives. These products are found in factory automation, medical pumping systems, fluid and material handling, robotics, power tools, machining, packaging, test, dispensing systems & printers.

Using a power supply that is capable of supporting high peak loads will result in a physically smaller power supply reducing system size, weight and cost. In a system that requires 800 W for a short duration, using a 400 W power supply with an 800 W peak rating will result in significant savings in volume and cost over a supply rated at 800 W continuous power.
There are four typical characterizations of peak load capability.

1. The power supply is rated for up to 30 seconds with a duty cycle of 10 to 15% at a peak load that is just below the Over Current Protection (OCP) limit. The OCP is usually set around 20 to 50% above the continuous current rating. The product is designed to give short duration headroom over and above the nominal continuous rating. The average power must not exceed the continuous rating. There are many applications that require an additional 20-30% of power for short durations. Electromechanical applications normally demand higher peak current for short durations.

2. A very high peak of up to 200% of nominal for a very short duration where the OCP does not react to the overload condition. Typically this allows peak current handling for 200 - 500 us. This peak capability covers a limited range of applications.

3. A higher power rating at high-line, normally meaning 180 VAC and above. For example, a 1200 W power supply may be able to provide 1500 W of continuous power when operated at an AC input voltage greater than 180 VAC. This is a genuine size and cost benefit if the AC input is in the higher range and is often specified for higher power products which are connected from phase to phase when the nominal single phase supply is low.

4. A power supply with the architecture, overload protection, energy storage, efficiency and thermal design to support high peak electromechanical loads. Such units will typically deliver up to twice their nominal power for up to 10 seconds with duty cycles up to 35%. XP’s fleXPower modular power system is one example which allows several standard outputs alongside one that provides a high peak current.

When selecting a power supply for a high peak power application the key parameters are the peak power that can be provided, the maximum duration of the peak, the duty cycle and power consumed by the load during the non-peak duration to ensure that the average or continuous rating of the power supply is not exceeded.

For example, the specification of a 400W power supply that can provide 800 W peak for up to 10 seconds at a 35% duty cycle defines the operating envelope within which the requirement must fall where the average power does not exceed the continuous rating of 400 W.

If the maximum rated peak power (Ppk) is required for the full 35% duty cycle then the available power during the non-peak duration (Po) will be approximately 180 W in order that the average power rating (Pav) is not exceeded.
Using the same criteria, if the duty cycle is reduced to 20%, then the non-peak power can be increased to 300 W, without exceeding the average continuous power rating of 400 W.

• **Powering Light Emitting Diodes (LED’s)**

LED’s have become the prevalent light source in many applications. Applications vary from street and tunnel lighting, domestic lighting, decorative and architectural lighting through to moving signs and traffic signals and non-visible applications such as data transmission & pulse oximeters.

The LED provides more light output per watt than other light sources combined with significantly longer life than conventional incandescent & fluorescent solutions. This combination of attributes offers significant reductions in both running and maintenance costs. As LED’s are solid state they are also shock resistant.

LED’s have high Spectral Power Density (SPD), defined as power per unit frequency or Watts/Hertz making them very efficient as light is radiated at very specific frequencies. This is an advantage over incandescent, fluorescent and High Intensity Discharge (HiD) lamps which radiate light at all frequencies both visible and invisible.

The table below shows the comparative power consumption for a given light output for incandescent bulbs, compact fluorescent tubes and LED’s. The figures in parenthesis express this in Lumens per Watt.

<table>
<thead>
<tr>
<th>Lumens</th>
<th>Incandescent Bulb</th>
<th>Compact Fluorescent</th>
<th>LED</th>
</tr>
</thead>
<tbody>
<tr>
<td>450</td>
<td>40 W (11.25)</td>
<td>12 W (37.5)</td>
<td>4 W (112.5)</td>
</tr>
<tr>
<td>800</td>
<td>60 W (13.30)</td>
<td>14 W (57.1)</td>
<td>7 W (114.3)</td>
</tr>
<tr>
<td>1100</td>
<td>75 W (14.67)</td>
<td>20 W (55.0)</td>
<td>10 W (110.0)</td>
</tr>
<tr>
<td>1600</td>
<td>100 W (16.00)</td>
<td>25 W (64.0)</td>
<td>18 W (88.9)</td>
</tr>
<tr>
<td>2600</td>
<td>150 W (17.33)</td>
<td>40 W (65.0)</td>
<td>25 W (104.0)</td>
</tr>
</tbody>
</table>

Lumens per Watt of various light sources
An LED functions in the same way as a normal diode. Current flows from positive to negative when the diode is forward biased, with electrons flowing from negative to positive. Inside the junction the electrons combine with holes and release light. The color of the light is determined by the material.

![LED Junction diagram]

The forward volt drop of the LED is significantly higher than a typical signal or rectifier diode. The table below shows the typical forward volt drop range and materials used dependent on the color of the LED.

<table>
<thead>
<tr>
<th>Color</th>
<th>Potential Difference</th>
<th>Materials</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infrared</td>
<td>1.6 V</td>
<td>Aluminum gallium arsenide (AlGaAs)</td>
</tr>
<tr>
<td>Red</td>
<td>1.8 V - 2.1 V</td>
<td>Aluminum gallium arsenide (AlGaAs), Gallium arsenide phosphide (GaAsP), Gallium phosphide (GaP)</td>
</tr>
<tr>
<td>Orange</td>
<td>2.2 V</td>
<td>Aluminum gallium indium phosphide (AlGaInP), Gallium arsenide phosphide (GaAsP)</td>
</tr>
<tr>
<td>Yellow</td>
<td>2.4 V</td>
<td>Aluminum gallium indium phosphide (AlGaInP), Gallium arsenide phosphide (GaAsP), Gallium phosphide (GaP)</td>
</tr>
<tr>
<td>Green</td>
<td>2.6 V</td>
<td>Aluminum gallium phosphide (AlGaN), Aluminum gallium indium phosphide (AlGaInP), Gallium nitride (GaN)</td>
</tr>
<tr>
<td>Blue</td>
<td>3.0 V - 3.5 V</td>
<td>Gallium nitride (GaN), Indium gallium nitride (InGaN), Silicon carbide (SiC), Sapphire (Al2O3), Zinc selenide (ZnSe)</td>
</tr>
<tr>
<td>White</td>
<td>3.0 V - 3.5 V</td>
<td>Gallium nitride (GaN [if AlGaN Quantum Barrier present]), Gallium nitride (GaN) based - Indium gallium nitride (InGaN) active layer</td>
</tr>
<tr>
<td>Ultraviolet</td>
<td>3.5 V</td>
<td>Indium gallium nitride (InGaN), Aluminum nitride (AlN), Aluminum gallium nitride (AlGaN)</td>
</tr>
</tbody>
</table>

Typical LED forward voltage
DC Output Considerations

The graph below shows a typical diode electrical characteristic. As the forward voltage rises the current rises sharply once the junction voltage is reached meaning that the LED must be driven by a current limited source. This is most efficiently achieved using a constant or regulated current supply which is generally referred to as an LED driver.

![Typical Diode Electrical Characteristics](image)

In applications where dimming is required such as moving signs and traffic or railway signalling it is preferable to pulse the LED using a Pulse Width Modulated (PWM) controlled source at a frequency invisible to the naked eye. Reducing the drive current can result in changes in color and the PWM source will result in longer life for the LED compared to reducing the drive current continously.

LED Drivers

While LED's are very efficient and produce a bright light source most applications require a number of devices to achieve the desired light output. There are a number of possible configurations for powering multiple LED's. The individual LED specified will define the drive current required and the number of devices. The configuration of the LED's will define the string voltage, the current rating and the power required from the LED driver.

There are wide ranges of AC input and DC input standard drivers available from 1 W to 300 W and above in both constant current & constant voltage versions to satisfy the various potential LED configurations and the wide range of indoor & outdoor applications. Constant voltage LED drivers are used where there is another regulation or control function between the driver and the LED load.

Control or dimming requirements will determine any features needed including simple current programming by external resistance or voltage and PWM control. Where more complex control functions are required they are often designed independently and implemented locally for the specific application. In such cases a simple constant voltage power supply or driver is adequate.
Examples of potential configurations are given below with varying advantages and disadvantages.

Series configuration

In series configuration the string voltage is the sum of the forward voltage of all LED’s and can be high. There are no current balance issues as there is only one current path. There is no need for ballast resistors and short circuit failure of one LED has no impact on the remainder of the string. Open circuit failure of one LED will result in total system failure.

Parallel configuration

In parallel configuration the total string voltage is reduced by a factor of the number of strings. Current imbalance can result from small variations in the forward voltage in each leg. A ballast resistor can be used in each leg to balance the current but this reduces overall system efficiency. Any failure of a single LED either short circuit or open circuit will result in increased current flow and stress; short circuit failure will cause increased current in the affected leg and dimming of the other legs while open circuit will result in failure of the affected leg and increased current in the others.

Matrix configuration

In matrix configuration the string voltage is the same as parallel configuration. Current imbalance can still result from variations in forward voltage but due to the multiple paths it cannot be corrected with ballast resistors. The selection of pre-scanned higher quality LED’s reduces the forward volt drop variations at a higher cost. Short circuit failure of an LED will result in a complete row ceasing to operate but current flow in the other LED’s remains unchanged. Open circuit failure results in increased current flow in other LED’s in the same row.

Multiple channel configuration

In multi channel configuration the string voltage is the same as parallel & matrix configurations. Each string has a dedicated constant current supply and is not affected by the other strings in the system. Any effects of LED failure are limited to the particular string. This system has the disadvantage of complexity and cost due to the need for multiple lower power LED drivers.
LED drivers are typically high efficiency products as the application itself is driven by efficiency gains and low cost of ownership. With the exception of some lower power devices, AC input drivers typically employ active power factor correction and are designed to meet the power factor and harmonic distortion requirements of the utilities from which the power is drawn.

In Europe there is specific legislation and limits (EN61000-3-2 class C) for harmonic distortion in lighting applications utilizing supplies up to 16 A per phase. Lighting applications also have specific safety agency approvals including UL8750 in North America and EN61347 in Europe.

Ripple and Noise

Switching power supplies and DC/DC converters have the fundamental advantage of smaller size and higher efficiencies when compared to linear voltage regulators. However, the switching technique has the associated disadvantage of relatively high AC content on the output.

Four AC components can be identified:

Low frequency ripple at two times the AC mains input frequency.

Switching frequency ripple.

Switching noise, which is high frequency pulse noise.

Aperiodic noise that is not related to the AC source frequency or the switching frequency of the converter.

These AC components are normally specified as a peak to peak noise amplitude so that the best method for testing is by an oscilloscope with the bandwidth set as specified in the data sheet, often 20 MHz. Some data sheets also specify a requirement to fit external components to the measurement point, such as electrolytic and ceramic capacitors, to mimic typical applications.

Accurate measurement of the output noise and ripple requires special attention to the equipment used, measuring probes and an understanding of noise being measured. The switch mode converter switches large amounts of power quickly when compared to the amplitude of the noise being measured. This means that even a few inches of ground wire loop in the oscilloscope probe will pick up fractions of Volts of noise. These probes must be properly connected to the measurement point.
DC Output Considerations

Measurement of the noise is performed as close as physically possible to the converter’s output terminals to reduce radiated noise pick-up. The greatest source of error is usually the unshielded portion of the oscilloscope probe. Voltage errors induced in the loop by magnetic radiation from the supply can easily swamp the real measured values.

To reduce these measurement errors unshielded leads must be kept as short as possible. The figure below shows the wrong method, because the ground wire of the probe can collect radiated noise and the oscilloscope display is strongly dependent on the probe position and ground lead length.

![Incorrect Diagram]

To prepare the probe for high frequency measurement, first remove the clip-on ground wire and the probe body fishhook adapter and then attach a special tip and ground lead assembly as shown in the figure below.

![Correct Diagram]

The ground ring of the probe is pressed directly against the output ground of the power supply and the tip is in contact with the output voltage pin.
• Output Protection

Output protection is implemented on power supplies and DC/DC converters to prevent damage to both the power supply and the end equipment. Power supplies are protected against overload and the end equipment against over-voltage and excessive fault current.

Overload Protection

In the case of an overload or short circuit being applied at the output, circuits are employed to limit the current or power that the unit will supply, protecting both the power supply and the load from excessive current. Overload protection is typically implemented using one of the techniques listed below:

Trip & restart or ‘Hiccup’ mode
Constant power limit
Constant current limit
Fold-back current limit
Fuses or circuit breakers

Trip & Restart or ‘Hiccup’ Mode

In this mode, the power supply detects an overload condition and the controller shuts the power supply off for a given time. After this time the power supply will try to start again. If the overload condition has been removed the power supply will start and operate normally. If the overload condition remains then the supply will switch off again, repeating the previous cycle. This condition will repeat until such time as the overload is removed. The off-time period may vary and the voltage reached will vary with the impedance of the overload. A typical wave form is shown below.

This type of overload limit is generally unsuitable for high inrush loads, such as capacitive loads and lamps or for battery-charging applications which benefit from constant power or constant current characteristics.
DC Output Considerations

Constant Power Limit

Constant power overload limits are often used in multiple output power supplies where the primary power is monitored and limited. This has the benefit of allowing power trading across the outputs while ensuring that the overall load is not exceeded.

This technique is also used on single output supplies in battery-charging applications as the current is maintained during an overload with the output voltage falling. Normally the constant power output will be maintained until the current reaches a point where damage may be caused, at which point the power supply will either go into a constant current mode or a trip & restart mode. When the overload condition is removed the power supply will recover automatically.
Constant Current Limit

In this case the current is held constant at a pre-determined level at a point where the load current exceeds the maximum allowed limit.

![Constant current limit diagram](image)

This technique allows high inrush capacitive loads, lamps, motors etc to start and is often utilized in battery-charging and standby battery applications. In some instances a reduction in current will occur below a certain voltage limit. The power supply will recover, following the curve, when the overload condition is removed.

Fold-back Current Limit

Fold-back current limit decreases both the voltage and the current when an overload condition is detected. The voltage and current decrease simultaneously as the load impedance decreases. This technique is employed extensively on linear power supplies to prevent excessive dissipation in the series pass element and where crowbar over-voltage protection is employed, limiting the fault current.

![Fold-back current limit diagram](image)

The output voltage will recover once the overload condition is removed, following the overload curve as the load impedance increases. This technique is not suitable for high inrush or battery applications.

Fuse or Circuit Breaker Protection

Fuses and circuit breakers are generally only used in large output distribution and battery systems. If there are many branches in an output distribution system then each individual branch needs to be protected against excessive current flow. Circuit breakers are also employed where batteries are used as there is the potential for extremely high fault currents due to the low impedance of the source. Both of these require manual intervention to reset following the removal of the fault.

In some multiple output power supplies a resetting fuse is used, in the form of a Positive Temperature Coefficient (PTC) thermistor. An overload condition will cause the thermistor to heat up to a point where a very sharp transition of resistance occurs creating a high impedance and restricting the current. The unit will require an off/on cycle or the complete removal of the load to reset.
Over Voltage Protection

Over voltage protection is implemented using one of two basic techniques; crowbar protection, where the output is clamped by a thyristor or Silicon Controlled Rectifier (SCR), and electronic protection, where the unit is shut down by an independent control loop.

Crow-bar Over Voltage Protection

Should the output voltage exceed the limit set by the zener diode then the SCR is fired, clamping the output to around 1 VDC and forcing the power supply into an overload condition. The clamp remains in place until the power supply is turned off and reset. This technique must be used in conjunction with a fold-back current limit.
Electronic Control Loop Over Voltage Protection

If an excursion of the output voltage is detected beyond the set limit, the power supply output is turned off usually via a second feedback loop. The second loop is utilized as it may be that the fault has arisen due to a failure in the main feedback loop. This is usually a latching condition that requires an off/on cycle to be performed to enable reset.

The characteristics of the output will be identical to the crowbar example, though the time for the output to fall to zero will depend upon the load applied. This system is utilized in most switching power supplies.

- Status Signals and Controls

Status signals and controls provide the user with the ability to remotely monitor the condition of certain parameters within a power converter and to remotely control the power converter using signal level instructions. Signals provide information and have no influence on the function of the power supply. Controls allow for changes in parameters or function.

Common status signal outputs include power fail or AC OK, DC OK or power good, fan fail, fan speed and over-temperature. Interfaces include remote enable, remote inhibit, current share, voltage programming and voltage margining.

Power Fail (PF) or AC OK

This signal indicates the condition of the input voltage to the power supply. The signal changes condition following the application of an in-specification input voltage. This signal is most useful at mains failure as it is normally set to change condition several milliseconds prior to the output falling from specification. This allows data save routines to be carried out. These signals often require the converter to be running as they can be generated on the secondary side of the main power transformer.

Timing diagram for a typical power fail/AC OK signal

1 = Line voltage is switched on
2 = Output voltage established
3 = PF signal changes state indicating input within tolerance
4 = Line voltage fails or is switched off
5 = PF signal detects line failure
6 = Output voltage falls outside tolerance
5 – 6 = PF warning period
DC Output Considerations

DC OK or Power Good

This signal indicates that the output voltage is within a set tolerance, usually above a minimum. This is normally only of interest at start-up as there is little or no warning of impending failure. Typical use of this signal is to ensure that a voltage rail is within tolerance and stable before enabling a load or to detect unit/output failure in redundant applications.

This signal can be used in combination with a PF or AC OK signal to enable a warning period prior to the output falling from tolerance in a line failure condition. This is often used in critical applications such as VME and is known as system reset (SRS).

System Reset (SRS/VME) Signals

The system reset signal indicates that the system voltage is OK. It is a combination of AC Fail (ACF) and DC OK. When ACF and DC OK are high and after a delay of 100-300 ms the SRS signal changes to high. If either ACF or DC OK changes to low then SRS changes to low.

![Diagram of System Reset Signal](image)

The System reset signal is the only signal that is described in a standard (the VME standard) and is typically used in industrial computing applications. The user may not see the ACF & DC OK signals as these are used internally to create the SRS signal.

Remote On/Off, Inhibit and Enable

This interface is used to switch a power converter on and off via a signal level control, without the need to switch the input supply. This removes the need for large and expensive switch gear, has the added advantage that there is no inrush current once the unit has been powered for the first time and ensures faster response at the output at switch-on. On many configurable multiple output power supplies the outputs can be switched on and off independently, enabling control of output sequencing.
An Inhibit interface requires that the user intervenes to inhibit or switch off the unit. An Enable interface requires that the user intervenes to enable or switch the unit on. Where a converter is fitted with an enable signal, the output will not be present when the input power is applied until the user intervenes.

Signals can be active high or low and often open or short circuit to allow for simple relay control.

Current Share, Power Share or Single Wire Parallel

This interface is used to allow converters to communicate with each other when connected in parallel to ensure that the load is distributed evenly amongst the available resources. Typical load share accuracy is +/-10%. This ensures that no individual supply is overloaded.

In low voltage redundant applications, where remote sensing of the output voltage is necessary, this interface will be needed to ensure load sharing and has the added benefit of reducing the stress on individual units and further improving reliability.

The connection between the units interfaces directly with the internal regulation circuit. The output current is monitored and the output voltage adjusted until the load current is shared equally.

Voltage Adjustment and Programming

The most common means of adjusting the output voltage of a power converter is via the internal adjustment potentiometer. Normally the output can be adjusted by up to +/-10%. Many converters can also be adjusted via an external potentiometer or resistor connected via the trim interface, an example of which is shown below.
Another option on some converters is the ability to program the output voltage using an external voltage or current. Common programming voltages are 0-5 VDC or 0-10 VDC for a 0-100% change in output voltage. Current programming can also be implemented where a 4-20 mA standard module can be utilized.

Because the programming signals interface directly with the converter’s regulation circuit, precautions against noise interference should be implemented.

Output Margining

Margin interfaces are used to increase or decrease the output by 5 to 10% by connecting the margin pin to plus or minus sense. This function is most commonly used in parallel systems or standby battery applications to test system elements without exposing the load.

In parallel systems, the approach is to shift the load to the higher output voltage unit to ensure that it can supply the full load. The remaining units are still operating so that there is no risk to the load should the output of the unit under test collapse.

In standby applications the charger output is reduced, shifting the load to the battery. Should the battery not support the load then the charger or rectifier is still present to ensure that the load is not dropped.

Common Topologies for Signals

Signal outputs can be presented in a number of topologies varying from converter to converter and manufacturer to manufacturer. The most common topologies are TTL compatible, open collector and volt free opto-couplers & relay contacts.

TTL Compatible Signals

Signal outputs are designed to interface directly with TTL logic circuits. They provide a signal output of 0 VDC or 5 VDC and can be active high or active low.

Signal outputs follow the standard rules for TTL circuits where a low signal is <0.8 V and a high signal is >2.8 V. A standard TTL signal will sink and source a minimum of 16 mA. The TTL signal output from a power converter is typically formed from a signal transistor with a pull up resistor to an internal auxiliary 5 V rail.
Open Collector or Open Drain Signals

Open collector or drain signals provide a signal transistor with its emitter or source connected to the zero volt output of the converter and the collector or drain left floating. This allows the user to connect the signal as the application demands using external components, the limit being the voltage and current ratings of the device used.

Isolated Signal Outputs

Isolated signal outputs are provided as opto-coupler transistors or relay contacts. These signals allow the user to configure the signals as either high or low as the application demands. Relay contacts also provide easy interface with industrial Programmable Logic Controllers (PLCs) and the inhibit interfaces of downstream DC/DC converters. Relay interfaces are typically small signal relays able to switch up to 1 A at 24 VDC and 0.5 A at 120 VDC.

Another benefit of isolated signals is that multiple converters can be used in series or parallel combinations allowing the user to create combined series or parallel signal outputs, regardless of positive or negative output configurations.

Digital Communication Interfaces

Direct communication with power supplies is increasingly common as power supplies become integrated into control systems or building management systems. Alarm status can be requested from, or flagged by, the power supply and operating parameters such as alarm trip levels, output voltage and current limit levels can be maintained or programmed during operation. In some cases, power supplies will have their serial number or build dates available for system interrogation. Three common digital buses are described on the next page.
Controller Area Network (CAN) Bus

The CAN bus is a differential 2 wire system used for data communication at high speeds (1 Mbps, 40 m line length) or slow speeds (10 kbps, 1 km line length). The CAN bus was designed by Bosch for automotive use and is therefore ideally suited to use in harsh, electrically noisy environments. Because of this, the CAN bus is widely used in industrial environments and many controller devices are available to implement a network. Data is transmitted serially using a Non-Return to Zero (NRZ) format for both efficiency of message length and integrity of data. The CAN bus standard defines the data packet makeup for transmission and this may be built in to the bus controlling devices but there are higher level protocols, such as CANopen and DeviceNet which can be used to simplify their use. These allow easy programming of a communication system using a variety of different manufacturers’ controllers.

Inter Integrated Circuit (I²C) Bus

The I²C bus was developed by Philips Semiconductors in the 1980’s as a method of bi-directional data transmission between ICs. The bus has been adopted for communication between general parts of circuits and application specific circuits. The bus is serial and consists of two wires, one called SDA (Serial DAta) for data and the other called SCL (Serial CLock) for clocking. A ground return is also required. The bus utilises a master/slave architecture in which there can be multiple masters, though when one has control, the others act as slaves. The bus will operate at speeds of 100 kbps as standard though there is a fast mode of 400 kbps or a high speed mode with speeds of up to 3.4 Mbps. The faster modes have tighter limits on the amount of noise that can be present. The maximum line length is typically 3-4 m, though if the clock speed is reduced to 500 Hz, the line length could be as long as 100 m. Normally, the limiting factors are the amount of noise pick up, which can obliterate the data, and data loss due to volt drops. Active current sources can be used to help to compensate for this.

Power Management (PM) Bus

The PM bus is an open power system standard, with a defined language, which is used to provide communications between power supplies/converters and other devices utilized in a power system. The PM bus protocol is implemented using the System Management (SM) bus which has become an industry standard serial interface for low speed system management communications. The PM bus is designed to allow programming, control and monitoring of suitably designed power conversion products.
• Series & Parallel Operation

Series Operation

In general, power supplies can be operated with outputs connected in series. Some care is needed to ensure that one power supply doesn’t affect the operation of the other. The total output voltage must not exceed the working output to earth breakdown voltage of either one of the power supplies.

Common practice when putting two power supplies in series is to connect reverse-biased diodes across the output of each series connected supply. This protects the output from the reverse voltage of the other in the event of a failure.

Only power supplies with constant current power limit should be considered for series operation. If a power supply with foldback current limit is used, lock-out can occur at switch-on because of the differing ramp-up times of the units.

A frequent application of power supplies in series is when using a dual output converter in order to obtain one single output of a higher voltage. In this configuration 24 V, 30 V, or 48 V outputs can be achieved from +/-12, +/-15 or +/-24 volt dual output power supplies.

Parallel Operation

If greater power is needed, a common solution is to connect two power supplies in parallel. This is usually performed with two power supplies which both have a constant current overload characteristic. The connections will normally be made with the load in a star formation, with the load being the star center. This will ensure that the lead lengths are very nearly equal. One power supply should not be looped to the next as connectors could be overloaded and sharing will be poor.

Sharing can be created by adjusting output voltages so that they are as close as possible and matching the impedances of the load cables, i.e. equivalent wire lengths and ring-crimped terminals.
The supply with the highest voltage will supply all of the load and this unit may run in current limit. If this happens the output voltage will drop to the voltage of the other power supply. This condition can be alleviated by the use of series resistors to balance the output load currents, but this method is not 100% accurate. Assuming that the two resistors are equal, small output voltage differences will still cause large current imbalances. This method does have a number of other downsides. Firstly, the use of the series resistors will degrade the output regulation. Secondly, allowing for the possible imbalances of up to 50%, each power supply must be capable of supplying not just 50% of the load current but up to 75%.

Active Power Sharing

In active power sharing each unit has an additional control terminal through which the power supplies are interconnected. This connection has many different names, the two most common being Power Share and Current Share. This connection enables the control circuits of the two power supplies to communicate and adjust the output voltage so that they share the load equally. In practice the units will typically share within +/-10%.
• Redundant Operation

Redundancy is implemented when continuous operation of the system is required in mission critical applications. Some of the most common areas are in communications, oil and gas, and other applications where revenue is generated by the system.

Diodes or MOSFETs can be used in redundant systems so that if one power supply fails the other will continue to operate without the failed power supply pulling down the output rail. Diodes and MOSFETs should always be rated higher than the power supply output current limit.

Adding diodes in the output lines of a power supply causes degradation of the output regulation due to the voltage drop across the diode at different current levels and reduced system efficiency, the use of MOSFETs in place of diodes reduces the power loss but is more complex and less reliable. This needs to be considered when using a redundant system as a solution as the load must be able to accept the poorer regulation. To overcome this problem it is possible to use the remote sense function and connect it after the diode. When doing this, the current share connection will also need to be made. This will allow the power supply to compensate for the diode voltage drop.

N+M Redundancy

It is common to have a redundant system, whereby a single unit or a number of units are required to support the load and another unit or number of units complete the system in order to provide 100% redundancy. In some applications it is not cost-effective to have 100% redundancy, although this approach will offer a sixty times improvement in reliability over a standalone PSU. A much more common approach is to use N+M redundancy, where N is the number of units required to support the load and M is the number of redundant units. In the example below a 3+1 system is shown, using 3 x 1500 W to support the 4500 W load and 1 x 1500 W unit in redundancy. This solution offers a twenty-fold increase in system reliability.
Thermal Management

• System Cooling Fan Selection

Power Losses

Power losses occur in all electronic components. The effect of these losses becomes greater as more and more components are squeezed into smaller spaces. The result of this miniaturization is higher levels of heat per cubic volume of space. This waste heat can be considered to be system losses and expressed as follows:

Input power = output power + losses
Efficiency = output power/input power (always less than 1)

Losses can be in the form of heat, noise, light or work, and are expressed in Watts. The heat generated by a component does not only pass into the air around that component, it is also absorbed by adjacent components, the PCB and the equipment case. This waste heat affects the performance of the adjacent components causing them to operate in higher ambient temperatures. Although design aids such as fluid dynamic analysis can assist in the thermal design of equipment, the costs associated with the system often restrict its use. The majority of equipment designers rely upon experience and knowledge to select a cooling system.

The dilemma is whether equipment can be designed to ensure that all waste heat can be removed by convection alone, or whether best practice calls for the incorporation of forced cooling. The thermal control of electronic equipment should be considered as part of the overall design specification resulting in a coherent design exhibiting greater reliability and life expectancy.

Establishing Allowable Temperature Rise

First establish the maximum operating temperature in which either the power supply or the electronics can safely operate. This could be 50 °C, the typical maximum operating temperature of a power supply when operated at full load. If the enclosure in which it is contained is to be used in a non air-conditioned environment, where the maximum temperature could reach as high as 40 °C, the maximum temperature rise allowed is 10 °C.
Establish Power to be Dissipated

If the application has all the load within the equipment then the total power dissipated within the enclosure is the power dissipated by the load and the power dissipated by the power supply due to its inefficiency. Below is an example for a 260 W load supplied by an 85% efficient power supply.

The load power is 260 W
+ The power lost due to the inefficiency of the power supply, which is 85% efficient, so the power lost is 46 W

Total power to be dissipated is 306 W

The airflow needed through a system can be calculated as follows:

\[\text{Air flow (m}^3\text{/hr)} = 2.6 \times \frac{\text{Power (W)}}{T_c} \]

Where \(T_c \) is the allowable temperature rise of the air in the equipment in °C, calculated as the maximum air temperature required minus the maximum temperature of air coming into the equipment (the ambient temperature). Airflow is measured in m³/hr, and the power in Watts is the amount of heat dissipated into the box.

The power supply often has its flow rate given as a linear figure, while fan manufacturers typically specify a volumetric flow rate. To convert from one to the other, convert the volumetric flow rate in m³/hr to m³/s (divide by 3600), then divide the resultant figure by the active area of the fan. The active area of the fan is the area traced by the tips of the blades minus the area of the central hub (which is not directly contributing to air movement).

\[\text{Linear flow rate (m/s)} = \frac{\text{Volumetric flow rate (m}^3\text{/s)}}{\text{Active fan area (m}^2\text{)}} \]

Therefore in our example:

\[\text{Air flow (m}^3\text{/hr)} = 2.6 \times \frac{\text{total power dissipated (W)}}{\text{Allowable temp rise (°C)}} \]

\[= 2.6 \times \frac{306 \text{ W}}{10 \text{ °C}} \]

\[= 79.56 \text{ m}^3/\text{hr} (46.86 \text{ CFM}) \]

To convert m³/hr to cubic feet per minute (CFM) multiply by 0.589.
Airflow figures published for fans are given in free air. In practice, an enclosure provides resistance to air movement. This resistance will change with each equipment design due to PCB sizes and positions and the effect of other components which will provide resistance to airflow. There is an approximation to back pressure which can be applied. This graph is an approximation or an average, based on accumulated historical data from fan manufacturers and is applicable to most electronic equipment. The graph shows the flow rate along the horizontal axis in litres per second and the back pressure on the vertical axis in Pascals.

Estimating Back Pressure

The graph above is then used to estimate the back pressure, so for a system which requires 14.2 l/s, the back pressure is 5 Pascals.

Using Fan Characteristic Curves

We know that the back pressure is 5 Pa and we require 79.56 m³/hr. Therefore, from the graph below it can be seen that fan 2 is the suitable selection. The shaded area in the graph indicates the optimum performance area of the fan.

<table>
<thead>
<tr>
<th>Curve</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>FAN 1</td>
</tr>
<tr>
<td>2</td>
<td>FAN 2</td>
</tr>
<tr>
<td>3</td>
<td>FAN 3</td>
</tr>
</tbody>
</table>
• Cooling Power Supplies

Power supplies generate waste heat which has to be dissipated. They typically have either convection cooled or forced cooled ratings or, in some cases, both. Forced cooled power supplies may incorporate a cooling fan, or may specify the user cooling required to operate the unit at maximum load and ambient temperature.

Where user cooling is required it is most important that the power supply cooling is adequate for both safe operation and adequate service life. It is very application specific and dependent on the ambient temperature, applied load and physical location with respect to the cooling fan and other system assemblies.

The main difference between convection and force cooled products is in the power density offered. For a given efficiency, convection cooled products offer a lower power density, meaning that they occupy a larger volume. A power supply on a 3” x 5” industry standard footprint may have a convection rating of 150 W while the force cooled version may have a rating as high as 350 W.

Convection Cooling

Where the power supply has a convection cooled rating, it is intended to be used in an environment where there is free air. The system designer must ensure that there is adequate space around and above the unit for free air convection currents to cool the unit and must also ensure that the ambient temperature local to the power supply is controlled to a level within its maximum ratings.

Forced Cooling

Force cooled products with integral cooling fans are easy to apply as it is a simple matter of ensuring that the maximum specified ambient temperature is not exceeded for a given load rating and that the intake and exhaust areas are not obstructed.

Typically, power supplies that require the user to provide forced air cooling will specify a minimum required airflow. This is usually for operation at 100% of the power rating at the maximum ambient temperature allowed.

The required airflow is often specified in Cubic Feet per Minute (CFM) which is also the common rating for cooling fans. The effectiveness of cooling fans installed in enclosures must be given consideration, as discussed earlier in this section, and the CFM rating deals in volume of air rather than air speed, which is the important factor. The object is to maintain the components used within the power supply at a safe operating temperature and to ensure adequate service life.

When the required airflow is specified in CFM it assumes that the power supply is installed in an area which is relatively similar to it’s own cross sectional area. This is rarely the case as the power supply is typically used as a sub-assembly within a complete equipment enclosure. It will also assume that the air is directed at the power supply, which may also not be the case, so converting to Linear Feet per Minute (LFM) or meters per second (m/s) provides a more valid criterion as linear air speed measurements specify where the air is flowing and directly relate to heat transfer.
Thermal Management

In the case above, the power supply requires forced air of 12 CFM in the direction indicated by the arrow. The cross sectional area is:

\[3" \times 1.34" = 4 \text{ inches}^2 \text{ or } 0.028 \text{ feet}^2 \]

Therefore the air velocity required is:

\[\frac{12}{0.028} = 429 \text{ LFM or } 2.17 \text{ m/s} \]

This air speed can be measured locally to the power supply to ensure that sufficient forced air cooling is being applied.

Evaluation of the Application

As discussed earlier, the object is to maintain the components used within the power supply at a safe operating temperature and to ensure adequate service life. Given the huge potential for variation between one application and another, the only real test is measurement of the temperature of the critical components within the power supply assembly when installed within the end application under the worst case external ambient conditions. The other option is to model the application exactly using a suitable software simulation.

The criteria for safe operation will be specified for the power supply in question or can be obtained from the manufacturer. For the example above, the specific component temperatures for safe operation are given on the next page; these are typical for a power supply of this type.
While these figures will ensure safe operation they do not give any indication of the service life that can be expected. The lifetime of a power supply is largely determined by the temperature of the electrolytic capacitors, which have a wear out mechanism. As a general rule, capacitor lifetime can be doubled for every 10 °C drop in operating temperature.

The graph below indicates the expected service life of the power supply based on measurement of two key electrolytic capacitors.

<table>
<thead>
<tr>
<th>Component</th>
<th>Max temperature °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>TR4 case</td>
<td>110 °C</td>
</tr>
<tr>
<td>C14</td>
<td>105 °C</td>
</tr>
<tr>
<td>C42</td>
<td>105 °C</td>
</tr>
<tr>
<td>TR11 case</td>
<td>110 °C</td>
</tr>
<tr>
<td>T7 coil</td>
<td>120 °C</td>
</tr>
</tbody>
</table>
Thermal Management

- **Cooling Power Modules**

Power supplies and DC-DC converters have pre-defined thermal ratings for both convection and forced cooling. However, when power modules are used, additional thermal management is required.

Since operating temperature directly affects the lifetime and reliability good thermal management of the power system is key to overall system performance. Thermal resistance is defined as:

\[\theta = \frac{\Delta T}{Q} \]

where \(\theta\) is thermal resistance in °C/W
\(\Delta T\) is the temperature difference between two reference points in °C
\(Q\) is the heat flux or power passing through the two points in Watts.

This definition allows the calculation of junction temperatures using a thermal circuit similar to an electrical circuit:

\[T_C = T_A + P_D (\theta_{CA}) \]

where
- \(T_C\) = maximum power supply temperature
- \(T_A\) = ambient temperature
- \(P_D\) = power dissipation
- \(\theta_{CA}\) = case to ambient thermal resistance

From this equation, power module temperature may be calculated, as in the following examples.
Example: A power module package must operate in ambient temperature of +30 °C. What is its baseplate temperature? Let $P_D = 5$ W and $\theta_{CA} = 11.0 \, ^\circ\text{C/W}$.

\[
T_C = T_A + P_D \theta_{CA} = 30 + (5 \times 11.0) = +85.0 \, ^\circ\text{C}
\]

Where operation in a higher ambient temperature is necessary, the maximum power module temperature can easily be exceeded unless suitable measures are taken.

Example: The same device to be used at an ambient temperature of +50 °C, what is its case temperature?

\[
T_C = T_A + P_D \theta_{CA} = 50 + (5 \times 11.0) = +105.0 \, ^\circ\text{C}
\]

This exceeds most power module maximum operating temperatures and therefore some means of decreasing the case-to-ambient thermal resistance is required.

As stated earlier, θ_{CA} is the sum of the individual thermal resistances; of these, θ_{cs} is fixed by the design of device and package and so only the case-to-ambient thermal resistance, θ_{CA}, can be reduced.

If θ_{CA}, and therefore θ_{JA}, is reduced by the use of a suitable heatsink, then the maximum T_{amb} can be increased:

Example: Assume that a heatsink is used giving a θ_{CA} of 3.0 °C/W. Using this heatsink the above example would result in a baseplate temperature given by:

\[
T_C = T_A + P_D \theta_{CA} = 50 + (5 \times 3.0) = +65.0 \, ^\circ\text{C}
\]

These calculations are not an exact science because factors such as θ_{CA} may vary from device type to device type and the efficacy of the heatsink may vary according to the air movement in the equipment.

Where it is impossible to improve the dissipation capability of the heatsink, forced air cooling becomes necessary and, though the simple approach outlined above is useful, more factors must be taken into account when forced air cooling is implemented.

- Baseplate Cooling

The use of power supplies in harsh or remote environments brings many fundamental design issues that must be fully understood if long-term reliability is to be attained.

Under these conditions, it is generally accepted that electronic systems must be sealed against the elements making the removal of unwanted heat particularly difficult. The use of forced-air cooling is undesirable as it increases system size, adds the maintenance issues of cleaning or replacing filters and introduces a wear out mechanism in the fan.

A commonly adopted solution is to use a standard power supply and modify the mechanical design to enable removal of heat from the sealed system. This simple compromise does not really address the fundamental issues of power supply design for the applications described and a more practical approach is to select a power supply which has been designed specifically for sealed enclosure applications.
Thermal Management

The extremes of ambient temperature encountered in remote sites can range from -40°C to over +40°C. It is common for the temperature within the enclosure to rise some 15 to 25°C above the external temperature. The positioning of the power supply within the enclosure can help minimize the ambient temperature in which it operates and this can have a dramatic effect on system reliability. As a rule of thumb, lifetime halves with every 10°C rise in temperature. The power supply therefore needs to be able to operate from -40°C to +65°C as a minimum specification.

System enclosures are typically sealed to IP65, IP66 or NEMA 4 standards to prevent ingress of dust or water. Removal of heat from other electronic equipment and power supplies in a situation with negligible airflow is the challenge. From the power system perspective, the most effective solution is to remove the heat using a heatsink that is external to the enclosure. However, most standard power supplies cannot provide an adequate thermal path between the heat-dissipating components within the unit and the external environment.

Conventional power supplies dissipate heat into small on-board heatsinks or onto a chassis. The basic construction is shown in Figure 1. Most of the heat is dissipated within the enclosure in which the power supply is used. Such units typically have to be derated from 50°C, delivering 50% of their full rated power at 70°C. The derating specification is a general guide based on individual components within the power supply not exceeding their maximum operating temperatures.

![Figure 1](image)

Construction of typical industrial AC-DC power supply

Fundamentally, the successful design of a power supply for use within sealed enclosures relies on creating a path with low thermal resistance through which conducted heat can be passed from heat-generating components to the outside world.

The components that generate the most heat in a power supply are distributed throughout the design, from input to output. They include the power FET used in an active PFC circuit, the PFC inductor, power transformers, rectifiers, and power switches. Heat can be removed from these components by mounting them directly onto a substantial base-plate that in turn can be affixed to a heatsink, rather than on to the PCB. As mentioned earlier, the heatsink is then located outside of the enclosure.
Thermal Management

This construction does demand accurate pre-forming of the leads of the components mounted on the baseplate, and accurate positioning of the PCB with respect to the baseplate but there is no significant increase in manufacturing complexity or costs.

With the appropriate heatsink, removal of heat can be so effective that there is no need to derate the unit until the ambient temperature reaches +70 °C. This eliminates the need to over-engineer the power supply for the application.

Dissipating the Heat: heatsink Calculations

Three basic mechanisms contribute to heat dissipation: conduction, radiation and convection. All mechanisms are active to some degree but once heat is transferred from the baseplate to the heatsink by conduction, free convection is the dominant one.

Effective conduction between the baseplate and heatsink demands flat surfaces in order to achieve low thermal resistance. Heat transfer can be maximized by the use of a thermal compound that fills any irregularities on the surfaces. System designers should aim to keep thermal resistance between baseplate and heatsink to below 0.1 °C/W. This is the performance offered by most commonly used thermal compounds when applied in accordance with manufacturers’ instructions.

Radiation accounts for less than 10% of heat dissipation and precise calculations are complex. In any case, it is good practice to consider this 10% to be a safety margin.

The degree of convection cooling depends on the heatsink size and type. Heatsink selection involves the following steps:

1. Calculate the power dissipated as waste heat from the power supply. The efficiency and worst case load figures are used to determine this using the formula:

\[
\text{Waste heat} = \left(\frac{1 - \text{Eff} \%}{\text{Eff} \%}\right) \times P_{\text{out}} \quad \text{or} \quad \left(\frac{1}{\text{Eff} \%}\right) - 1 \times P_{\text{out}}
\]

Figure 2. Basic construction of baseplate cooled PSU with all of the major heat-generating components fixed directly to the baseplate

This construction does demand accurate pre-forming of the leads of the components mounted on the baseplate, and accurate positioning of the PCB with respect to the baseplate but there is no significant increase in manufacturing complexity or costs.

With the appropriate heatsink, removal of heat can be so effective that there is no need to derate the unit until the ambient temperature reaches +70 °C. This eliminates the need to over-engineer the power supply for the application.

Dissipating the Heat: heatsink Calculations

Three basic mechanisms contribute to heat dissipation: conduction, radiation and convection. All mechanisms are active to some degree but once heat is transferred from the baseplate to the heatsink by conduction, free convection is the dominant one.

Effective conduction between the baseplate and heatsink demands flat surfaces in order to achieve low thermal resistance. Heat transfer can be maximized by the use of a thermal compound that fills any irregularities on the surfaces. System designers should aim to keep thermal resistance between baseplate and heatsink to below 0.1 °C/W. This is the performance offered by most commonly used thermal compounds when applied in accordance with manufacturers’ instructions.

Radiation accounts for less than 10% of heat dissipation and precise calculations are complex. In any case, it is good practice to consider this 10% to be a safety margin.

The degree of convection cooling depends on the heatsink size and type. Heatsink selection involves the following steps:

1. Calculate the power dissipated as waste heat from the power supply. The efficiency and worst case load figures are used to determine this using the formula:

\[
\text{Waste heat} = \left(\frac{1 - \text{Eff} \%}{\text{Eff} \%}\right) \times P_{\text{out}} \quad \text{or} \quad \left(\frac{1}{\text{Eff} \%}\right) - 1 \times P_{\text{out}}
\]
Thermal Management

2. Estimate the resistance of the thermal interface between the power supply baseplate and the heatsink. This is typically 0.1 °C/W when using a thermal compound.

3. Calculate the maximum allowable temperature rise on the baseplate. The allowable temperature rise is simply:

\[T_B - T_A \]

where \(T_B \) is the maximum ambient temperature outside of the cabinet and \(T_A \) is the maximum allowable baseplate temperature.

4. The required heatsink is defined by its thermal impedance using the formula:

\[\theta_H = \frac{T_B - T_A}{-0.1} \]

Waste Power

5. The final choice is then based on the best physical design of heatsink for the application that can deliver the required thermal impedance. The system’s construction will determine the maximum available area for contact with the baseplate of the power supply and the available space outside of the enclosure will then determine the size, number and arrangement of cooling fins on the heatsink to meet the dissipation requirement.

Conclusion

The reliability of remotely-sited electronic equipment is fundamentally dependent upon power supply reliability. The most cost-effective approach to power system design is to use power supplies designed for the application, which conduct heat via large, flat baseplates to heatsinks that can be mounted outside of the enclosure.
Reliability

• Terminology

Failure Rate λ

Failure rate is defined as the percentage of units failing per unit time. This varies throughout the life of the equipment and if λ is plotted against time, a characteristic bathtub curve (below) is obtained for most electronic equipment.

The curve has three regions, A - Infant mortality, B - Useful life, C - Wear out.

In region A, poor workmanship and substandard components cause failures. This period is usually over within the first few tens of hours and burn-in is normally employed to prevent these failures occurring in the field. Burn-in does not entirely stop the failures occurring but is designed to ensure that they happen within the manufacturing location rather than at the customer’s premises or in the field.

In region B the failure rate is approximately constant and it is only for this region that the following analysis applies.

In region C, components begin to fail through reaching end of life rather than by random failures. Electrolytic capacitors dry out, fan bearings seize up, switch mechanisms wear out and so on. Well implemented preventative maintenance can delay the onset of this region.

Reliability

Reliability is defined as the probability that a piece of equipment operating under specified conditions will perform satisfactorily for a given period of time. Probability is involved since it is impossible to predict the behavior with absolute certainty. The criterion for satisfactory performance must be defined as well as the operating conditions such as input, output, temperature, load etc.

MTBF – Mean Time Between Failures
MTTF – Mean Time To Failure

MTBF applies to equipment that is going to be repaired and returned to service, MTTF to parts that will be thrown away on failing. MTBF is the inverse of the failure rate and is often misunderstood. It is often assumed that the MTBF figure indicates a minimum guaranteed time between failures. This assumption is incorrect, and for this reason the use of failure rate rather than MTBF is recommended.
Reliability

The mathematics are expressed as follows:

\[m = \frac{1}{\lambda} \]

\[R_m = e^{-\lambda t} = e^{-(t/m)} \]

where \(R_m \) = reliability

\[e \] = exponential (2.178)

\[\lambda \] = failure rate

\[m \] = mtbf

\[t \] = time

This shows that for a constant failure rate, plotting reliability \(R_m \), against time \(t \) gives a negative exponential curve. When \(t/m = 1 \), i.e. after a time \(t \), numerically equal to the MTBF figure \(m \), then

\[R_m = e^{-1} = 0.37 \]

This equation can be interpreted in a number of ways:

a) If a large number of units are considered, only 37% of them will survive for as long as the MTBF figure.

b) For a single unit, the probability that it will work for as long as its MTBF figure is only 37%.

c) The unit will work for as long as its MTBF figure with a 37% Confidence Level.

To put these numbers into context, consider a power supply with an MTBF of 500,000 hrs (or a failure rate of 0.002 failures per 1000 hrs), or as the advertisers would put it, an MTBF figure of 57 years. Using the above equation, \(R(t) \) for 26,280 hours (three years) is approximately 0.95 and if such a unit is used 24 hours a day for three years the probability of it surviving is 95%. The same calculation for a ten year period will give an \(R(t) \) of 84%. If 700 units are used, on average 0.2%/1000hrs will fail, or approximately one per month.

Service Life

There is no direct connection or correlation between service life and failure rate. It is perfectly possible to design a very reliable product with a short life. A typical example is a missile, which has to be very very reliable (MTBF of several million hours), but its service life is only around 4 minutes (0.06hrs). 25-year-old humans have an MTBF of about 800 years, (failure rate of 0.1% per year), but not many have a comparable service life. If something has a long MTBF, it does not necessarily have a long service life.
• Factors Affecting Reliability

The most important factor is good, careful design based on sound experience, resulting in known safety margins. Unfortunately, this does not show up in any predictions, since they assume a perfect design.

Many field failures of electronic equipment are not due to the classical random failure pattern discussed here, but to shortcomings in the design and in the application of the components, as well as external factors such as occasional voltage surges. These may be outside of the specification but no one will ever know as all that will be seen is a failed unit. Making the units rugged through careful design and controlled overstress testing is a very important part of making the product reliable.

The failure rate of the equipment depends on these three factors.

Complexity Keep things simple, because what isn’t there can’t fail but, conversely, what isn’t there can cause a failure. A complicated or difficult specification will invariably result in reduced reliability. This is not due to the shortcomings of the design staff, but to the resultant component count. Every component used will contribute to the equipment’s unreliability.

Stress For electronic equipment, the most prominent stresses are temperature, voltage, vibration and temperature rise due to current. The effect of each of these stresses on each of the components must be considered. In order to achieve good reliability, various derating factors have to be applied to these stress levels. The derating has to be traded off against cost and size implications. Great care and attention to detail is necessary to reduce thermal stresses as far as possible. The layout has to be such that heat-generating components are kept away from other components and are adequately cooled. Thermal barriers are used where necessary and adequate ventilation needs to be provided.

The importance of these provisions cannot be overstressed since the failure rate of the components will double for a 10 °C increase in temperature. Decreasing the size of a unit without increasing its efficiency will make it hotter, and therefore less reliable.

Generic Generic reliability (also known as inherent reliability) refers to the fact that, for example, film capacitors are more reliable than electrolytic capacitors, wirewrap connections more reliable than soldered ones, fixed resistors more reliable than potentiometers. Components have to be carefully selected to avoid the types with high generic failure rates. Quite often there is a cost trade-off, as more reliable components can be more expensive.
Reliability

Estimating the Failure Rate

The failure rate should be estimated and measured throughout the life of the equipment. During the design, it is predicted. During the manufacture, it is assessed. During the service life, it is observed.

The failure rate is predicted by evaluating each of the factors affecting reliability for each component and then summing these to obtain the failure rate of the whole equipment. It is essential that the database used is defined and used consistently. There are three databases in common use: MIL-HDBK-217, HRD5 and Bellcore. These reflect the experiences of the US Navy, British Telecom and Bell Telephone respectively.

In general, predictions assume that the design is perfect, the stresses known, everything is within ratings at all times, so that only random failures occur; every failure of every part will cause the equipment to fail and that the database is valid. These assumptions are incorrect. The design is less than perfect, not every failure of every part will cause the equipment to fail, and the database is likely to be 15 years out of date. However, none of this matters as long as the predictions are used to compare different topologies or approaches rather than to establish an absolute figure for reliability. This is what predictions should be used for.

Prediction

Parts stress method In this method, each factor affecting reliability for each component is evaluated. Since the average power supply has over 100 components and each component about seven factors (stress ratio, generic, temperature, quality, environment, construction and complexity), this method requires considerable effort and time. Predictions are usually made in order to compare different approaches of topologies, i.e. when detailed design information is not available and the design itself is still in a fluid state. Under such circumstances it is hardly worthwhile to expend this effort and the much simpler and quicker Parts count method is used.

Parts count method In this method, all like components are grouped together, and average factors allocated for the group. So, for example, instead of working out all the factors for each of the 15 electrolytic capacitors used there is only one entry of capacitor with a quantity of 15. Usually only two factors are allocated, generic and quality. The other factors, including stress levels, are assumed to be at some realistic level and allowed for in the calculation. For this reason, the factors are not interchangeable between the two methods. In general, for power supplies, HRD5 gives the most favourable result closely followed by Bellcore, with MIL-217 the least favorable. This depends on the mix of components in the particular equipment, since one database is ‘unfair’ on ICs, and another on FETs. Hence the importance of comparing results from like databases only.
Reliability

Assessment
This is the most useful and accurate way of predicting the failure rate. A number of units are put on life test, at an elevated temperature, and so the stresses and the environment are controlled.

During life tests and reliability demonstration tests it is usual to apply greater stresses than normal, so that the desired result is obtained more quickly. Great care has to be applied to ensure that the effects of the extra stress are known and proven to be calculable and that no hidden additional failure mechanisms are activated by the extra stress. The usual extra stress is an increase of temperature and its effect can be calculated as long as the maximum ratings of the device are not exceeded.

Prototype Testing

With all the sophisticated computer analysis available, there is still no substitute for thoroughly testing products or components. One way of doing this would be to perform HALT testing. HALT (Highly Accelerated Life Test) is used to test as many different conditions as possible and cycling the temperature, input and load independently.

Manufacturing Methods

Suppliers must be strictly controlled and deliver consistently good product with prior warning of any changes to processes. Because of the supply chain JIT and QA practices this can be achieved by dealing with a small number of trusted suppliers.

Manual assembly is prone to errors and to some random, unintentional abuse of the components by operators, such as ESD. This causes defects, which will show themselves later.

Changing settings produces inconsistency and side effects. A good motto is ‘if it works leave it alone, if it does not, find the root cause.’ There must be a reason for the deviation and this must be found and eliminated, rather than masked by an adjustment.

The results from the HALT test can be used to set test limits for production screening. Highly Accelerated Stress Screening (HASS) uses the same equipment as for HALT tests but knowing the operating and destruct (where possible) limits can be used to screen HALT tested products in production. This process differs from conventional stress screening in that the climatic and mechanical stimuli are much higher and consequently the test times are much shorter. HASS can be summed up as a process used in manufacturing to allow discovery of process changes and prevent products with latent defects from getting into the field.
Reliability

• System Reliability

There are two further methods of increasing system reliability.

More reliable components MIL standard or other components of assessed quality could be used but in industrial and commercial equipment this expense is not normally justified.

Redundancy In a system where one unit can support the load and two units are used in parallel, the system is much more reliable since the system will still work if one unit fails. Clearly, the probability of both units failing simultaneously is much lower than that of one unit failing.

Redundancy has a size and cost penalty so normally an n+1 system is used, where n units can support the load, but n+1 units are used in parallel, 2+1 or 3+1 being the usual combinations. Supposing the reliability of each unit under the particular conditions is 0.9826, the system reliability for an n+1 system where n=2 would be 0.9991, an improvement of 20 times. (Nearly 60 times in a 1+1 system).

There are downsides to this approach. More units, higher cost and the need for faulty units to be brought to the operator’s attention so that they can be replaced, changing units must not make the system fail (hot swap). The extra circuitry required to monitor all aspects and ensure reliability in itself increases the failure rate and cost of the system (see page 63 for more details on redundant operation).

Comparing Reliability

When comparing reliability figures, the following points must be satisfied.

• The database must be stated and must be identical. Comparing a MIL-HDBK-217F prediction with a MIL-HDBK-217E prediction or an HRD5 prediction is meaningless as there is no correlation.

• The database must be used consistently and exclusively. The result is meaningless if a different database is used for some components.

• The external stresses and environment must be stated and be identical. (input, load, temperature etc). The result is meaningless if all the environmental details are not stated or are different.

• The units must be form-fit function interchangeable. If, for example, the ratings are identical, but one needs an external filter and the other does not then there is no comparison (although you could work out the failure rate of the filter and add it to the failure rate of the unit).

There is no magic; if one manufacturer predicts 200,000 hours and another states 3,000,000 hours for a comparable product, then they must have used a different database, a different stress level or a different environment.
Legislation

• Power Supply Safety

Legislation requires electrical equipment to be designed to reduce the likelihood of injury or damage due to:

- Electric shock
- Energy related hazards
- Fire
- Heat related hazards
- Radiation
- Chemical hazards

A safe power supply is an inherent part of any electrical product and must comply with the relevant safety standard. There are several standards which could be used for power supplies and the decision on which to use depends on the intended application of the end product.

There is an international product specific standard for power supplies which is used to demonstrate compliance with the safety requirements, this is part of the IEC61204 range of standards. The standard covers both stand alone and component power supplies and references the product family standards IEC60950, IEC60601, IEC61010 & IEC60065.

Most power supplies will use an information technology equipment standard (60950), a medical equipment standard (60601) or less commonly a standard for equipment used for measurement, industrial process and educational use such as equipment for testing or measuring non-electrical quantities, controlling output quantities to specific values or laboratory equipment which measures, analyses or prepares materials.

Another standard which is sometimes used in conjunction with one of the above is UL508 which covers industrial equipment intended to power control systems for electrical motors. It is common for DIN rail power supplies to have approval to this standard.

The standard for information technology equipment, IEC60950, covers a wide range of product types and is commonly used. Approvals are separately granted by a number of national test laboratories depending on the target markets. UL (Underwriters Laboratories, UL60950) are commonly used for approvals in North America, CSA (Canadian Standards Association, CSA22.2 No.60950) for Canada and there are a number of European test laboratories which will grant approval for EU wide use, EN60950. UL & CSA also operate a scheme to grant approvals for both markets.

In the major Asian markets other approvals are required. The requirements are essentially as laid out in IEC60950 with some additional testing in some instances, including EMC.

<table>
<thead>
<tr>
<th>Country</th>
<th>Approval Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>China</td>
<td>CCC</td>
<td>(China Compulsory Certification)</td>
</tr>
<tr>
<td>Taiwan</td>
<td>BSMI</td>
<td>(Bureau of Standards, Metrology & Inspection)</td>
</tr>
<tr>
<td>Japan</td>
<td>PSE</td>
<td>(Product Safety Electric Appliance & Materials)</td>
</tr>
<tr>
<td>Korea</td>
<td>KETI</td>
<td>(Korean Electrical Testing Institute)</td>
</tr>
</tbody>
</table>

There are many other approval bodies in existence which may need to be considered depending on the equipment target markets.
Legislation

Electrical Safety

An electrically safe system relies on the use of safety earthing, the insulation of hazardous voltages and the control of leakage currents.

Insulation

The five different types of insulation grades are listed below.

Operational/functional insulation
Insulation that is necessary only for the correct functioning of the equipment and does not provide any protection against electric shock.

Basic insulation
Insulation applied to live parts to provide basic protection against electric shock.

Supplementary insulation
Independent insulation applied in addition to basic insulation in order to provide protection against electric shock in the event of a failure of basic insulation.

Double insulation
Insulation comprising both basic insulation and supplementary insulation.

Reinforced insulation
Single insulation system applied to live parts which provides a degree of protection against electric shock equivalent to double insulation.

Creepage and clearance spacing specified in the safety standard must also be met. The requirement depends on the insulation type, working voltage and pollution degree. The insulation barriers must then undergo a high voltage test.

Earthing/Grounding

The two types of earth are listed below:

Functional earth
This does not provide any safety function, for example the screen on an external power supply output lead.

Protective earth
This provides protection against electric shock in a class I system and must meet certain performance criteria, such as resistance.
Earth Leakage Current

Current that flows down the earth conductor is defined as earth leakage current. To prevent the risk of electric shock in the event of the earth becoming disconnected, the maximum value is defined in the safety standard under touch current and is normally 3.5 mA for pluggable equipment. Higher values are permissible if the equipment is permanently connected. Within the power supply the main contributors to the leakage current are the EMC filter Y capacitors.

Class I Systems

Class I systems rely on earthing and insulation to provide a means of protection. In the event of the basic insulation between live and earth failing the protective earth provides a path for the fault current to flow, causing a fuse or circuit breaker to trip. The diagram below shows the insulation diagram of a class I power supply.
Class II Systems

Class II systems rely on insulation only to protect against electric shock. The diagram below shows the insulation diagram of a class II power supply.

- Medical Safety

Designing in safety is must for medical products to succeed in both regulatory and marketing requirements. IEC60601-1 is the cornerstone document addressing many of the risks associated with electrical medical equipment.

The 60601-1 standard covers equipment, provided with not more than one connection to a particular mains supply and intended to diagnose, treat, or monitor patients under medical supervision and which makes physical or electrical contact with the patient and/or transfers energy to or from the patient and/or detects such energy transfer to or from the patient.

The standard consists of four distinct parts, the base standard (60601-1), collateral standards (60601-1-x), particular standards (60601-2-x) and performance standards (60601-3-x). The base standard has been adopted in most major countries as the national standard either unchanged, such as EN60601-1 (Europe) or with national deviations such as UL60601-1 (USA) and CAN/CSA C22.2 No. 601.1 (Canada).

Currently the standard is available in both 2nd edition and 3rd edition. The 2nd edition is IEC60601-1:2003 and 3rd edition is IEC60601-1:2005. The 3rd edition was published in 2005 after 10 years of development. Its purpose is to harmonize the terminology contained in the 2nd edition with other standards such as IEC60950.

The 3rd edition differs from the 2nd edition putting emphasis on the OEM implementing a risk management system compliant with ISO14971. It also introduces new concepts such as essential performance of equipment and distinguishes between the operator and the patient with MOOP (Means Of Operator Protection) and MOPP (Means Of Patient Protection).
The concept of MOPP and MOOP allows the manufacturer relaxation in terms of creepage & clearance distances for MOOP if it is proven through risk management that the equipment will not come into contact with the patient in normal operation or under a single fault condition. The requirements for MOOP follow IEC60950 and for MOPP follow those required in IEC60601-1 2nd edition.

The structure of the base standard is hazard specific and provides requirements for evaluating the common hazards associated with electro-medical products. Its scope is to protect both patients and operators by reducing the likelihood of electric shock, mechanical, radiation, ignition of flammable anaesthetics, fire and excessive output energy hazards.

The basic concept of the standard requires that two means of protection (MOP) or two levels of protection (LOP) under IEC60601-1 2nd edition are employed in various areas of the product so that if one fails the product will retain another means of protection to contain any electrical shock hazard from either the patient or the operator.

To achieve these two means of protection, 60601-1 permits the use of three building blocks used in different combinations. These building blocks are insulation, protective earth and protection impedance. For example protective earth (1 x MOP) used in conjunction with basic insulation (1 x MOP) provides the two means of protection required. The table below lists the permitted building blocks and the means of protection they provide.

Before the design can start the insulation class of the equipment must be determined; whether the equipment will be class I (reliant on protective earth) or class II (not reliant on protective earth) as must the classification of the applied part if applicable.

<table>
<thead>
<tr>
<th>Building Block</th>
<th>Means of Protection Provided</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protective Earth</td>
<td>1</td>
</tr>
<tr>
<td>Basic Insulation</td>
<td>1</td>
</tr>
<tr>
<td>Supplementary Insulation</td>
<td>1</td>
</tr>
<tr>
<td>Double Insulation</td>
<td>2</td>
</tr>
<tr>
<td>Reinforced Insulation</td>
<td>2</td>
</tr>
</tbody>
</table>

Applied parts are circuits that deliberately come into contact with the patient and are classified as type B, type BF or type CF each providing a degree of protection against electric shock.
Legislation

Once this has been defined an insulation diagram can be constructed identifying the main circuit blocks such as primary circuits, secondary circuits and applied parts. It allows differing concepts to be analysed to achieve the required means of protection. Below is a typical isolation diagram for a power supply meeting the requirements of a BF and CF applied part. Isolation barrier 1 is contained within a standard 230 VAC - 12 VDC power supply. Isolation barrier 2 is contained within a 12V - 48V DC/DC converter.

Once it has been determined whether Means of Operator Protection (MOOP) or Means of Patient Protection (MOPP) is required the insulation schemes, corresponding separation distances and test voltages required can be specified. The tables below are taken from IEC60601-1:2005 for MOPP.

Minimum creepage distances and air clearances providing means of patient protection

<table>
<thead>
<tr>
<th>Working Voltage VDC up to and including</th>
<th>Working Voltage V r.m.s up to and including</th>
<th>Spacing providing one Means of patient protection</th>
<th>Spacing providing two Means of patient protection</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Creepage Distance mm</td>
<td>Air Clearance mm</td>
</tr>
<tr>
<td>17</td>
<td>12</td>
<td>1.7</td>
<td>0.8</td>
</tr>
<tr>
<td>43</td>
<td>30</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>85</td>
<td>60</td>
<td>2.3</td>
<td>1.2</td>
</tr>
<tr>
<td>177</td>
<td>125</td>
<td>3</td>
<td>1.6</td>
</tr>
<tr>
<td>354</td>
<td>250</td>
<td>4</td>
<td>2.5</td>
</tr>
<tr>
<td>566</td>
<td>400</td>
<td>6</td>
<td>3.5</td>
</tr>
<tr>
<td>707</td>
<td>500</td>
<td>8</td>
<td>4.5</td>
</tr>
<tr>
<td>934</td>
<td>660</td>
<td>10.5</td>
<td>6</td>
</tr>
<tr>
<td>1061</td>
<td>750</td>
<td>12</td>
<td>6.5</td>
</tr>
<tr>
<td>1414</td>
<td>1000</td>
<td>16</td>
<td>9</td>
</tr>
<tr>
<td>1768</td>
<td>1250</td>
<td>20</td>
<td>11.4</td>
</tr>
<tr>
<td>2263</td>
<td>1600</td>
<td>25</td>
<td>14.3</td>
</tr>
<tr>
<td>2828</td>
<td>2000</td>
<td>32</td>
<td>18.3</td>
</tr>
<tr>
<td>3535</td>
<td>2500</td>
<td>40</td>
<td>22.9</td>
</tr>
<tr>
<td>4525</td>
<td>3200</td>
<td>50</td>
<td>28.6</td>
</tr>
<tr>
<td>5656</td>
<td>4000</td>
<td>63</td>
<td>36.0</td>
</tr>
<tr>
<td>7070</td>
<td>5000</td>
<td>80</td>
<td>45.7</td>
</tr>
<tr>
<td>8509</td>
<td>6300</td>
<td>100</td>
<td>57.1</td>
</tr>
<tr>
<td>11312</td>
<td>8000</td>
<td>125</td>
<td>71.4</td>
</tr>
<tr>
<td>14140</td>
<td>10000</td>
<td>160</td>
<td>91.4</td>
</tr>
</tbody>
</table>
Test voltages for solid insulation forming a means of protection

<table>
<thead>
<tr>
<th>Peak Working Voltage (U) V peak</th>
<th>Peak Working Voltage (U) V d.c.</th>
<th>AC Test voltages in V r.m.s.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Means of Operator Protection</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Protection from Mains Part</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Protection from Secondary Circuits</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Means of Patient Protection</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Protection from Mains Part</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Protection from Secondary Circuits</td>
</tr>
<tr>
<td>U < 42.4</td>
<td>U < 60</td>
<td>1000</td>
</tr>
<tr>
<td>42.4 < U ≤ 71</td>
<td>60 < U ≤ 71</td>
<td>2000</td>
</tr>
<tr>
<td>71 < U ≤ 184</td>
<td>71 < U ≤ 184</td>
<td>No test</td>
</tr>
<tr>
<td>184 < U ≤ 212</td>
<td>184 < U ≤ 212</td>
<td>No test</td>
</tr>
<tr>
<td>212 < U ≤ 354</td>
<td>212 < U ≤ 354</td>
<td>1500</td>
</tr>
<tr>
<td>354 < U ≤ 848</td>
<td>354 < U ≤ 848</td>
<td>2000</td>
</tr>
<tr>
<td>848 < U ≤ 1414</td>
<td>848 < U ≤ 1414</td>
<td>3000</td>
</tr>
<tr>
<td>1414 < U ≤ 14140</td>
<td>1414 < U ≤ 14140</td>
<td>5000</td>
</tr>
<tr>
<td>10000 < U ≤ 14140</td>
<td>10000 < U ≤ 14140</td>
<td>2000</td>
</tr>
<tr>
<td>U > 14140</td>
<td>U > 14140</td>
<td>3000</td>
</tr>
</tbody>
</table>

Leakage Current

Whether the product is considered MOOP or MOPP the leakage current requirements must be met. A further change between the 2nd and 3rd edition is related to the earth leakage current requirements. The table overleaf is taken from 2nd edition and defines the required maximum leakage current values. It should be noted that UL60601-1 has an earth leakage current requirement of 300 μA under the 2nd edition.
Legislation

Allowable values of continuous leakage and patient auxiliary currents, in milliamperes

<table>
<thead>
<tr>
<th>Current</th>
<th>Type B</th>
<th>Type BF</th>
<th>Type CF</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N.C.</td>
<td>S.F.C</td>
<td>N.C.</td>
</tr>
<tr>
<td>Earth Leakage Current General</td>
<td>0.5</td>
<td>1(\text{1})</td>
<td>0.5</td>
</tr>
<tr>
<td>Earth Leakage Current for Equipment according to notes (\text{2}) & (\text{3})</td>
<td>2.5</td>
<td>5(\text{1})</td>
<td>2.5</td>
</tr>
<tr>
<td>Earth Leakage Current for Equipment according to note (\text{3})</td>
<td>5</td>
<td>10(\text{1})</td>
<td>5</td>
</tr>
<tr>
<td>Enclosure Leakage Current</td>
<td>0.1</td>
<td>0.5</td>
<td>0.1</td>
</tr>
<tr>
<td>Patient Leakage Current according to note (\text{3})</td>
<td>DC</td>
<td>0.01</td>
<td>0.05</td>
</tr>
<tr>
<td></td>
<td>AC</td>
<td>0.1</td>
<td>0.5</td>
</tr>
<tr>
<td>Patient Leakage Current (Mains voltage on the signal input part or signal output part)</td>
<td>-</td>
<td>5</td>
<td>-</td>
</tr>
<tr>
<td>Patient Leakage Current (Mains voltage on the applied part)</td>
<td>-</td>
<td>-</td>
<td>5</td>
</tr>
<tr>
<td>Patient Auxiliary Current according to note (\text{3})</td>
<td>DC</td>
<td>0.01</td>
<td>0.05</td>
</tr>
<tr>
<td></td>
<td>AC</td>
<td>0.1</td>
<td>0.5</td>
</tr>
</tbody>
</table>

N.C - Normal Condition
S.F.C - Single Fault Condition

\(\text{1}\) The only S.F.C for earth leakage current is the interruption of one supply conductor at a time.

\(\text{2}\) Equipment which has no protectively earthed accessible parts and no means for the protective earthing of other equipment and which complies with the requirements for the enclosure leakage current and for the patient leakage current, if applicable.

\(\text{3}\) Equipment specified to be permanently installed with a protective earth conductor which is electrically so connected that it can only be loosened with the aid of a tool and which is so fastened or otherwise so secured mechanically at a specific location that it can only be moved after the use of a tool.

\(\text{4}\) Mobile X-ray equipment and mobile equipment with mineral insulation.

\(\text{5}\) The maximum values for the AC component of the patient leakage current and of the patient auxiliary current specified in the table refer to the AC-only component of the currents.

In the 3rd edition the earth leakage current requirement specified in notes \(\text{2}\) & \(\text{4}\) has been relaxed to 5 mA in normal operation and 10 mA under a single fault condition. The requirements for touch current (formally enclosure leakage current) remain at 100 μA in normal operation and 500 μA under a single fault condition.

For a power supply in a class I system the key parameter is the single fault earth leakage current. An allowable single fault condition is to open the protective earth. In this instance earth leakage current becomes touch current.
High Voltage Safety Testing

AC input power supplies are subjected to high voltage or hi-pot testing to verify the integrity of the insulation system employed. There are a number of types or classes of insulation required depending on the working voltage and the insulation class of the product which are well defined in the various safety standards. To test finished products requires care particularly with class I insulation systems where a protective earth is employed. Where Class II insulation systems are employed the user may test to the specified primary to secondary isolation voltage.

Insulation Types

The diagram below shows a typical class I AC mains input power supply insulation system.

Between primary (AC input) and secondary (DC output) reinforced insulation is required.
Between primary and earth basic insulation is required.
Between secondary and earth operational insulation is required.

Class I AC Power Supply Insulation System

Test requirements for the power supply are categorized into two groups; type testing or design verification and production test.

Type tests are performed by the safety agency and are intended to prove that the construction of the power supply meets the requirements dictated by the relevant safety standard. For IT/Industrial products and medical products the type test requirements are as follows:

IT/Industrial
- Primary to secondary: 3000 VAC, or the equivalent DC voltage
- Primary to earth: 1500 VAC, or the equivalent DC voltage
- Secondary earth: No requirement provided the secondary voltage is less than 42.4 VAC or 60 VDC

Medical
- Primary to secondary: 4000 VAC, or the equivalent DC voltage
- Primary to earth: 1500 VAC, or the equivalent DC voltage
- Secondary to earth: No requirement provided the secondary voltage is less than 42.4 VAC or 60 VDC
Legislation

Production tests are performed during the manufacturing process and are intended to ensure integrity of safety critical insulation. Production line testing is conducted on both reinforced and basic insulation.

Reinforced insulation cannot be tested without over-stressing basic insulation on the end product. Safety agencies therefore allow manufacturers to test reinforced insulation separately during the manufacturing process meaning that transformers and other primary to secondary isolation barriers are tested prior to their incorporation into the product. Only primary to earth or basic insulation is tested on the final assembly prior to shipping each product.

Should a user or safety agency engineer require verification of the type tests on a complete power supply precautions must be taken to ensure that a correct result is achieved and the insulation is not damaged. Where basic insulation is to be verified no special considerations need to be taken and 1500 VAC can be applied from primary to earth. If the primary to secondary insulation is to be verified consideration must be made to how the test is performed.

Because only basic insulation exists between primary and earth and only operational insulation exists between secondary and earth applying 3000 VAC directly from primary to secondary on the finished product will over stress the primary to earth and secondary to earth insulation which may result in an apparent failure.

To test the reinforced insulation barrier the power supply needs to be removed from any earthed chassis and all paths to earth should be removed to ensure that basic and operational insulation barriers are not over stressed during the test. This entails removal of Y-capacitors and gas discharge tubes where used.

On many products not all potential paths can be removed. PCB’s may utilize earth traces between primary and secondary while complying with creepage and clearance requirements. In some instances a breakdown or arcing may be observed between secondary and earth which can lead to component failure and render the power supply inoperable. This is a breakdown of operational insulation and does not indicate a failure of the reinforced insulation between primary and secondary that is the focus of the test.

Type testing on a finished power supply may result in failure. It is difficult to isolate the test to the individual components and isolation barriers in question and this extends to testing performed once the product is installed in the end application. Over stressing components during these tests cannot always be avoided and if tests are performed incorrectly reliability may be affected.

Power Supply disassembly may be required for type testing
• Electromagnetic Compatibility (EMC)

EMC describes how pieces of electrical and electronic equipment interact with each other when they act as either sources or receivers of noise. These two types of interaction are described as emissions and immunity.

Emissions

Emissions are electrical noise generated by the power supply or its electronic load and transmitted along the input and output cables as conducted noise or from the outer casing & cables as radiated noise. If left unchecked electrical noise could interfere with the correct and safe operation of nearby electrical equipment and it is therefore a requirement to restrict the amount of noise generated. The EMC directive was introduced in Europe in 1992 (89/336/EEC) and updated in 2004 (2004/108/EC) with the aim of imposing limits on the amount of noise that equipment can emit. In the USA, the limits are set by the FCC (Federal Communications Commission). VCCI (Voluntary Control Council for Interference by Information Technology Equipment) limits are the Japanese equivalent. In Asia the CISPR and FCC standards are widely accepted by the various approval bodies.

Conducted Noise

Conducted noise is that which travels along physical routes between pieces of equipment. We usually think of these paths as being the mains cables which can transmit noise generated by one piece of equipment along the mains supply (within an installation, a single building or even separate buildings) and which can then affect other pieces of equipment connected to the same mains system, or as the cables which directly connect one piece of equipment to another, such as DC cables or signal and control wires.

The noise takes one of two forms according to whether it is common to the ground system or exists between differing parts of the electrical circuit.

Common mode noise exists within different parts of the circuit and is common to the ground plane. On the mains input to a piece of electrical equipment it can be measured between the line conductor and the earth conductor, or between the neutral conductor and the earth conductor. Differential mode noise exists between parts of the circuit with different potentials. On the mains input to electrical equipment it can be measured between the line conductor and the neutral conductor.
Differential Mode Noise

Differential mode noise is primarily generated by rapid changes in current. Within a switch mode power supply, the primary circuit is opened and closed by means of a switching device such as a BJT or MOSFET. The current flowing through the circuit goes through a continuous cycle of changing from a maximum value to zero and vice versa as the switch opens and closes. The rate of current change is very fast, perhaps in the order of 50 ns, and if the primary current was in the order of 1A, the change would be 1 A in 50 ns or put another way, 20 million A/s. The impedance of the printed circuit traces will be significant at current changes of this magnitude and unwanted voltages will be generated along the traces in the form of noise.

Common Mode Noise

Common mode noise is primarily generated by changes in voltage. The same switching device which is breaking the current in the primary circuit is also breaking a voltage. The voltage could be as high as 600 V and this may be being interrupted in the order of 50 ns meaning that there could be a voltage change rate of 12 V/ns or 12,000 million volts per second. The unwanted capacitance found around the switching element, for example between its case and the heatsink to which it is attached will be significant at these levels of voltage change and significant voltages in the form of noise will be generated.

Radiated Noise

Electrical noise can radiate from the enclosure or casing of the equipment and from its connecting cables. It will escape through the seams, ventilation slots, display areas and so on and travel in any direction through the air. In order to successfully propagate through air, the wavelength will be shorter than for conducted emissions meaning that frequencies will be higher. While conducted emissions are measured up to a frequency of 30 MHz, radiated emissions are typically measured up to 1 GHz.

Standards

In the US, EMC standards are written and enforced by the FCC. FCC 20870 covers both radiated and conducted noise. The FCC standard is harmonized with CISPR standards, and these are sometimes used instead to show compliance.

In Europe, the EMC directive does not define what the required levels are which need to be met so we must rely on international standards. There are three different types published. Product-specific standards define the allowable EMC performance of particular types of product. If a product-specific standard exists, then it MUST be used. Where a type of equipment doesn’t have an associated product standard, generic standards can be used. As the term generic suggests, they contain requirements which cover many types of equipment and therefore some of the tests listed cannot be relevant or even adhered to. The product specific and generic standards refer to basic standards. These are the ones which define the exact test set up as well as the limits allowed. In Asia the CISPR and FCC standards are widely accepted.
For power supplies, the product-specific standard, IEC61204-3, takes precedence over the generic standards. For emissions, it defines the following basic standards:

- **CISPR22** for conducted emissions (maximum of level B)
- **CISPR22** for radiated emissions (maximum of level A)
- **IEC61000-3-2** for harmonic currents
- **IEC61000-3-3** for voltage flicker

Sometimes there are other basic standards which need to be applied. For example, EN55014 is applicable to motor operated household equipment, CISPR11 is applicable to industrial, scientific and medical equipment. These basic standards will be called into use by product family standards which may be applicable to end user equipment.

Methods of Measurement

Noise measurement techniques are defined by the relevant basic standard. The techniques will be generally similar whether it is an IT standard such as CISPR22 which is applicable or a military standard such as MIL 461 or DEF STAN 59-41.

Conducted Noise

Conducted noise values will largely be dependent upon the local impedance of the mains system at the location at which the measurement is being done. Mains impedances will vary throughout a network and they could be vastly different throughout the world. A Line Impedance Stabilization Network (LISN), also known as an Artificial Mains Network (AMN) is used to give a defined mains impedance to the measurement system of 50 Ohms. In the case of the IT standard CISPR22, the noise will be measured from 150 kHz to 30 MHz and two readings must be taken. These are a quasi peak measurement and an average measurement. Both must be under their respective limit lines in order for the equipment to pass.

Radiated Noise

The services of a dedicated test house will normally be required to measure radiated noise. This is because the test should be performed on a large area known as an Open Area Test Site (OATS) which will not only be free of reflecting surfaces but will also be calibrated so that the influence of any reflections from far away is known as the reflections will either add to the original signal, or detract from it depending upon the phase shift of the reflection. The measuring equipment will consist of an antenna which will feed into a receiver. The emissions from all sides of the equipment must be taken and for each face the antenna will be moved between heights of one and four meters to obtain the worst case reading. In addition to this, the antenna will be positioned with its elements alternately horizontal and vertical, again to obtain the worst case reading.

As this setup is impractical for most companies, alternative techniques are normally used to give an indication of the radiated emissions. This may consist of using near field probes to ‘sniff’ around the enclosure of the equipment or using conducted emission techniques to measure at frequencies into the hundreds of MHz band. This is a relevant test as it will often be the cables themselves that are the source of the radiation.
Legislation

EMC Filtering

A power supply or DC/DC converter will have an in-built input filter to reduce the conducted emissions. It will have two parts; one to reduce the common mode noise, the other to reduce the differential mode noise. Common mode noise can be reduced by use of Y capacitors between line and ground and another one between neutral and ground in conjunction with a common mode inductor.

Differential mode noise can be reduced by use of an X capacitor between the line and the neutral in conjunction with a differential mode inductor; in some instances the differential mode inductor is formed from the leakage inductance of the common mode inductor so that there is only one visible wound component.

When combined the resulting filter may look like this:

Sometimes the built-in filter will give an inadequate performance for a given application. This may be where the power supply is designed to meet the lesser requirements of an industrial environment but is being used in the more stringent light industrial or residential environment. Perhaps several power supplies are being used in a single piece of equipment and the resulting emissions must be reduced, or perhaps noise from the load itself is being coupled into the input of the power supply. In all these instances some form of external filtering will be required.

Filter Selection

There are some basic steps to follow when choosing a filter, some of which are straightforward and others less so.

Mechanical format

Is the filter going to be mounted within the equipment where it can be fixed to a panel or should it also provide the extra functions of being the mains input connector and perhaps contain an on/off switch? If it is the former, a chassis mount filter can be used. These will generally have faston terminals for easy connection but may also come with flying leads. IEC inlet filters can have built-in on/off switches and even fuse holders. They can be mounted by either screwing them down to the equipment or by use of self locking lugs. Generally, for metal chassis equipment, the bolt-down variety will provide a lower impedance earth path for the circulating noise down to ground.
The filter should be able to pass the maximum working current of the equipment so as not to overheat but generally the lower the current capacity within a filter series, the higher its filtering performance.

A filter will be required to reduce the noise at certain frequencies. By how much and at which frequencies is information which will not readily be known without having first performed a conducted noise measurement. Filters have differing amounts of attenuation and, for a given current rating, the higher the attenuation the larger the filter. As there will be a practical limit on the size of filter components, large amounts of attenuation will require the use of multi-stage filters.

Immunity

Immunity is concerned with how a piece of equipment will behave when subject to external electrical or magnetic influences in the form of noise. The noise will exist as either conducted or radiated noise and will be from natural sources such as lightning, electrostatic build up or solar radiation or may be from man made sources such as radio or mobile phone transmissions, commutation noise from electrical motors or emissions from power supplies and other switching devices.

Conducted Immunity Phenomena

A power supply or piece of electrical equipment will be subject to conducted noise either via the mains connection, a DC output or via the signal and control lines. The noise could take various forms from brown-outs of the mains, to single short duration but high voltage spikes, to RF frequency noise coupled into the cables and conducted into the equipment.

Radiated Immunity Phenomena

Noise can also directly enter a system via the air in the form of electrical or magnetic fields. The field is picked up by the cables attached to a piece of equipment or by the internal PCBs themselves and can be in the form of electromagnetic fields generated by a mobile phone or the magnetic field generated from a nearby transformer.

Standards

The product standard for power supplies, EN61204-3, lists all of the basic immunity standards that are applicable to a power supply. These are listed below. For each type of test there are two important factors: the test severity level and the performance criteria which defines how the equipment operates while the test is being carried out.

Performance criteria A

There is no change in operating status of the equipment. For a power supply this means that it will continue to operate and no signals will change state.

Performance criteria B

There is a loss of function while the test is being applied, but when the test stops, the operating parameters automatically return to normal. For a power supply, this means that the output may go out of regulation and signals may change state but only during the test.
Performance criteria C: There is a loss of function while the test is being applied and a manual reset or intervention is required to restore the original operating parameters.

Electrostatic discharge: IEC61000-4-2

There are three types of test specified in the standard: contact discharge, air discharge and discharge onto a coupling plane. The test is to simulate the effect of a person charging themselves up (to many kV) and then touching either the equipment directly or adjacent equipment which could in turn affect the equipment’s behavior. For open frame power supplies, this test is not normally applicable but for other power supplies, the pass conditions are ±4 kV for contact discharge and ±8 kV for air discharge and coupling plane discharge, all with minimum performance criteria B.

RF electromagnetic field: IEC61000-4-3

This test simulates the fields given off by mobile phones and DECT phones. The field is generated by a sweeping signal generator with a 1 kHz modulation function. The signal is amplified and radiated using an antenna. The field strengths are high enough and in the frequency band (80 MHz to 1 GHz) to prevent local radio and TV stations and more importantly emergency services communications from working so the test must be performed in a screened chamber. For power supplies intended to operate in a light industrial or residential environments, the field strength is 3 V/m but for industrial power supplies the required field strength is 10 V/m. Minimum performance criteria is B in both cases.

Electrical fast transients: IEC61000-4-4

This test is to simulate switching transients generated by motor or solenoid activation or perhaps from fluorescent lighting. The pulse is very short, only 50ns with a 5ns rise time and is applied between the two lines and the earth. Generally, the test is only applied to the AC input as the DC lines and the signal and control lines on a power supply are normally too short. For power supplies intended to operate in light industrial or residential environments the pulse is ±1 kV but for industrial power supplies the required pulse is ±2 kV. Minimum performance criteria is B in both cases.

Voltage surge: IEC61000-4-5

This test is to simulate the effects of a near lightning strike. The duration and energy content of the pulse are much greater than for the electrical fast transients test with the duration being 50 μs with a 1.2 μs rise time. The pulse is applied between each line and earth and also between lines themselves. For power supplies the pulse is ±2 kV common mode, ±1 kV differential, with a minimum of performance criteria B in both cases.

RF conducted: IEC61000-4-6

This test is similar to the RF radiated electromagnetic field test and must be applied under similar conditions within a screened chamber though the frequency range is 150 kHz to 80 MHz. For power supplies intended to operate in a light industrial or residential environments, the coupled noise is 3 Vrms but for industrial power supplies the coupled noise is 10 Vrms. Performance criteria B is the minimum applicable in both cases.
Voltage dips and interruptions: IEC61000-4-11

A voltage dip represents the brown-out conditions experienced from time to time on the power grid, while a voltage interruption represents a complete black out condition. There are 3 parts to the test; a 30% dip for 10 ms with minimum performance criteria B, a 60% dip for 100 ms with minimum performance criteria C and a >95% interruption for 5 seconds with minimum performance criteria C.

• CE Marking

CE marking within Europe was established as a means of identifying a product as meeting all the relevant European directives. These directives have been introduced as a way of allowing free trade within the EU member states as individual members are no longer allowed to prevent trade on technical grounds. By displaying the CE mark, the product is identified to customs and border controls as complying with the necessary directives. There are many directives which are applicable for CE marking and these include:

- Low voltage equipment
- Toys
- Electromagnetic compatibility
- Personal protection equipment
- Active implantable medical devices
- Hot water boilers
- Medical devices
- Recreational craft
- Refrigeration appliances
- Telecommunications terminal equipment
- Radio & telecommunications terminal equipment
- Simple pressure vessels
- Construction products
- Machinery
- Non automatic weighing machines
- Gas appliances
- Civil explosives
- Potentially explosive atmospheres
- Lifts
- Pressure equipment
- In vitro diagnostic medical devices

For component power supplies only the Low Voltage Directive (LVD) is applicable. For external power supplies the EMC directive and the Energy Related Products (ErP) directive also apply.

Low Voltage Directive (LVD) 2006/95/EC

The LVD is applicable to equipment designed for use with a voltage rating of between 50 and 1000 VAC and between 75 and 1500 VDC. The directive itself does not define how to comply with it but by conforming to one of the relevant standards, such as the IT safety standard EN60950, compliance is demonstrated. The route to compliance is by generating a Technical Construction File (TCF) which includes the following:

- General description of the electrical equipment
- Conceptual design and manufacturing drawings
- Description and explanation of these designs and drawings
- Listing of the product standards used as safety reference
- Results of design calculations and examinations
- Test reports
Legislation

This directive is applicable to apparatus liable to cause electromagnetic disturbance or the performance of which is liable to be affected by such disturbance. Again, the directive does not state how compliance should be achieved, but there are two routes to compliance. The first is the standards route whereby the product is tested against either product specific or generic standards. The second is the technical construction file route. This would be chosen where a piece of equipment may be too large to undergo testing, or it may be that some of the tests are just not relevant. The arguments for this would be laid down in the TCF which would be assessed and signed off by a competent body.

Energy Related Products Directive (ErP) 2009/125/EC

The ErP (formerly known as EuP) Directive provides a framework for setting eco-design requirements for energy related products. Commission regulation No 278/2009 implements the directive for external power supplies with regard to no load power consumption and active efficiency based on the quantity sold within the EU and the end application.

Declaration of Conformity (DofC)

The CE mark should be accompanied by a declaration of conformity. This will list:

- Name & address of the manufacturer
- Description of the equipment
- Reference to harmonized product standards used
- Name of the signatory and their position
- Last two digits of the year in which the CE marking was affixed

This is a self declaration that the manufacturer (or person who places the product on the market in the EU) has taken all necessary steps to ensure compliance with all the relevant directives.

The Low Voltage Directive relates to open frame, component and external power supplies. The EMC Directive relates to external power supplies. The ErP Directive relates to external power supplies sold in high volumes within the EU for office equipment and consumer electronics applications.

The CE mark on an open frame or component power supply shows that it complies to the LVD, the CE mark on an external power supply shows that it complies with the LVD & EMC Directives and where applicable the ErP Directive.

• Defense and Avionics EMC Standards

For power supplies operated in these environments there are standards maintained by government or international organisations such as the US Department of Defense (MIL-STD), the UK Ministry of Defense (DEF STAN), the French military (GAM-EG) & NATO (STANAG).

Many countries use the MIL-STD series of standards maintained by the US Department of Defense, but have national deviations covering specific conditions or equipment used by their armed forces. EMC standards are typically organised by service (air force, army, navy etc.), environment (above and below deck for example), test details, equipment and specification limits. There are standards covering immunity, conducted emissions and radiated emissions. The key elements for power supplies are the conducted immunity and conducted emissions standards which are discussed overleaf.
MIL-STD 1275, MIL-STD 704 & DEF STAN 61-5 are commonly used immunity standards. MIL-STD 1275 covers requirements for military vehicle applications, MIL-STD 704 covers military aircraft applications and DEF STAN 61-5 covers military vehicles, naval vessels and aircraft.

Within the susceptibility standards there is no pass or fail criteria for the power system as this is up to the user to define. If a power supply is damaged by a surge then it would be considered a failure but a power supply showing higher level of output ripple during a conducted susceptibility test may be acceptable to the end equipment and deemed to pass.

Typical susceptibility tests cover abnormal operating voltages which may be created by generator only supplies or emergency power, voltage surges, voltage spikes & voltage drop outs. The tables and graphs following outline some of the key criteria for 24/28 V nominal supplies.

MIL-STD 1275-D Normal Operating Mode

<table>
<thead>
<tr>
<th>Test</th>
<th>Voltage</th>
<th>Duration</th>
<th>Polarity</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steady State</td>
<td>25-30 VDC</td>
<td>Infinite</td>
<td>Positive</td>
<td>20 mΩ source impedance</td>
</tr>
<tr>
<td>Normal Operation Surge</td>
<td>40 VDC</td>
<td>50 ms</td>
<td>Positive</td>
<td>20 mΩ source impedance</td>
</tr>
<tr>
<td>Normal Operation Surge</td>
<td>32 VDC</td>
<td>500 ms</td>
<td>Positive</td>
<td>20 mΩ source impedance</td>
</tr>
<tr>
<td>Normal Operation Brown Out</td>
<td>23 VDC</td>
<td>600 ms</td>
<td>Positive</td>
<td>20 mΩ source impedance</td>
</tr>
<tr>
<td>Normal Operation Brown Out</td>
<td>18 VDC</td>
<td>500 ms</td>
<td>Positive</td>
<td>20 mΩ source impedance</td>
</tr>
<tr>
<td>Normal Operation Spike</td>
<td>250 VDC</td>
<td>70 µs</td>
<td>Positive & Negative</td>
<td>50 Ω in parallel with 5 μH</td>
</tr>
<tr>
<td>Normal Operation Spike</td>
<td>40 VDC</td>
<td>1 ms</td>
<td>Positive & Negative</td>
<td>50 Ω in parallel with 5 μH</td>
</tr>
</tbody>
</table>

A diagram is also shown illustrating the envelope of surges in normal operating mode for 28 VDC systems.
Envelope of surges in generator only mode for 28 VDC systems

MIL-STD 1275-D generator only operating mode

<table>
<thead>
<tr>
<th>Test</th>
<th>Voltage</th>
<th>Duration</th>
<th>Polarity</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steady State</td>
<td>23-33 VDC</td>
<td>Infinite</td>
<td>Positive</td>
<td>Generator only operation</td>
</tr>
<tr>
<td>Generator Only Surge</td>
<td>100 VDC</td>
<td>50 ms</td>
<td>Positive</td>
<td>500 mΩ source impedance</td>
</tr>
<tr>
<td>Generator Only Surge</td>
<td>40 VDC</td>
<td>500 ms</td>
<td>Positive</td>
<td>500 mΩ source impedance</td>
</tr>
<tr>
<td>Generator Only Brown Out</td>
<td>15 VDC</td>
<td>500 ms</td>
<td>Positive</td>
<td>500 mΩ source impedance</td>
</tr>
<tr>
<td>Generator Only Brown Out</td>
<td>16 VDC</td>
<td>600 ms</td>
<td>Positive</td>
<td>500 mΩ source impedance</td>
</tr>
<tr>
<td>Generator Only Spike</td>
<td>100 VDC</td>
<td>1 ms</td>
<td>Positive & Negative</td>
<td>50 Ω in parallel with 5 μH</td>
</tr>
</tbody>
</table>

Envelope of spikes in normal operating mode for 28 VDC systems

Notes:
- Steady State Voltage Limit
- Maximum energy content of 15 millijoules
- The solid line includes ripple voltage.
- Surge Source Impedance: Surges originate from a source impedance of approx. 500 mΩ.
DEF STAN 61-5 pt 6

This standard specifies the voltages present in a 12 V or 24 V vehicle system or platform. It also specifies the voltages expected to be presented to any equipment (Terminal). The following graphs outline the requirements for a 24 V terminal system.

Envelope of spikes in normal operating mode for 28 VDC systems

![Diagram of envelope of spikes for 28 VDC systems]

Typical Test Configuration

![Diagram of typical test configuration]
Legislation

Negative Test Pulse - Pulse Train A

Positive Test Pulse - Pulse Train B

Surge (Load Dump)
Conducted Emissions

MIL-STD 461F is commonly specified for conducted emissions and, in the UK, DEF STAN 59-41 and more latterly DEF STAN 59-411 is required. The test requirements for these standards are quite different using different Line Impedance Stabilization Networks and different measurement or detection techniques.

For a 28 V system the basic curve is used and as the supply voltage increases relaxation factors are employed.

MIL-STD 461F conducted emissions limits

For a 28 V system the basic curve is used and as the supply voltage increases relaxation factors are employed.

DEF STAN 59-41 & 59-411 limits for land service use

The limit (class A, B, C or D) is defined by the specific application.
Legislation

- No Load Power Consumption and Efficiency Legislation for External Power Supplies

Two important reasons for controlling the power consumed by external power supplies are continuity of the energy supply and reduction of environmental impacts. Targets are given for external supplies because high quantities are sold, they normally do not have an off button and they are commonly left plugged into the mains supply when not in use.

Many areas of the world have introduced limits for no load power consumption and active efficiency of external power supplies. In the US there are three main parties, these being: California Energy Commission (CEC), US Congress with its Energy Independence and Security Act (EISA), both of which are mandatory and finally Energy Star which is voluntary.

In Europe there is the Energy related Products (ErP) Directive formally known as the Energy using Products (EuP) Directive. Other parts of the world that are enacting legislation are mainly basing their limits on previous Energy Star requirements.

Both CEC and ErP have standardized their requirements with Energy Star to reduce the confusion of multiple limits. In the US, the CEC limits changed on 1st July 2008 and the Energy Star limits changed on 1st Nov 2008. In Europe, the limits changed on 1st Jan, 2009.

The tables within Summary of Limits show the limits imposed by the four bodies. The average efficiency is taken as the mean of individual efficiencies at 25%, 50%, 75% and 100% loads.

Energy Independence & Security Act 2007 (EISA)

In 2007 the US Congress passed a law effective 1st July, 2008, called the Energy Independence and Security Act of 2007 (EISA). This states that single output external power supplies of less than 250 W manufactured on or after 1st July 2008 should meet maximum no load power consumption, and minimum active load efficiency limits with an input of 115 VAC, 60 Hz.

These requirements are identical to the 1st July, 2008 CEC limits meaning that any power supply meeting efficiency level IV will comply with the EISA requirements. There are four exceptions included in the EISA legislation:

- The power supply is to be used in an application requiring Federal Food and Drug Administration listing and approval as a medical device.
- The power supply is charging either a detachable battery pack or the internal battery pack of a product which is primarily motor operated.
- The power supply is to be used for spares for a product that was manufactured before 1st July, 2008.
- The power supply is to be subsequently exported outside of the US.
ErP Directive 2009/125/EC

This is a framework Directive for the setting of eco-design requirements for energy related products. Parts of this are being enacted separately and there is a Commission Regulation No 278/2009 of 6th April 2009 which implements the Directive with regard to no load power and active efficiency of external power supplies.

Article 15, paragraph 2(a) of the Directive states that the volume of sales should be indicatively more than 200,000 units per year within the EU. Paragraph 2 of the Commission Regulation defines that it is external power supplies used in office equipment and consumer electronics which are covered by the Directive.

California Energy Commission (CEC) Appliance Efficiency Regulations

Before the US Congress passed the EISA in 2007 the requirement for meeting energy efficiency targets for external power supplies in the USA was largely voluntary except for in California where state law had made it mandatory. The EISA requirements are based on the CEC limits so both are the same.

Energy Star

Energy Star is a body which promotes energy efficiency through use of the energy star logo. Product which meets the minimum requirements can have the blue star logo applied. For external power supplies this is not allowed but the logo can be used on datasheets. At the time of writing there is a proposal to sunset Energy Star for external power supplies as more and more end equipment is incorporated to the Energy Star scheme. Meeting the Energy Star requirements is voluntary but there is increasing legislation around the world basing mandatory requirements on the Energy Star limits.

Summary of Limits

Energy Star (Nov 1st, 2008 limits) & ErP (April 2011 limit)

<table>
<thead>
<tr>
<th>No load power limits</th>
<th>Rated power</th>
<th>No load consumption</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 W to <50 W (≤ 51 W)</td>
<td>≥50 W to 250 W (> 51 W)</td>
<td>0.3 W</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Active mode power limits, O/P < 6 V</th>
<th>Rated power</th>
<th>Average efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 W to 1 W</td>
<td>≥ 0.497 x rated power + 0.067</td>
<td></td>
</tr>
<tr>
<td>>1 W to ≤49 W (≤ 51 W)</td>
<td>≥(0.0750 x Ln(rated power)) + 0.561</td>
<td></td>
</tr>
<tr>
<td>>49 W (>51 W)</td>
<td>≥ 0.86</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Active mode power limits, O/P ≥ 6 V</th>
<th>Rated power</th>
<th>Average efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 W to 1 W</td>
<td>≥ 0.48 x rated power + 0.14</td>
<td></td>
</tr>
<tr>
<td>>1 W to ≤49 W (≤ 51 W)</td>
<td>≥(0.0626 x Ln(rated power)) + 0.622</td>
<td></td>
</tr>
<tr>
<td>>49 W (>51 W)</td>
<td>≥ 0.87</td>
<td></td>
</tr>
</tbody>
</table>

Figures in () are for ErP limits.
Legislation

In addition, Energy Star power supplies with an input power of 100 W and above must have minimum power factor of 0.9 at 115 VAC 60 Hz.

<table>
<thead>
<tr>
<th>No load power limits</th>
<th>Rated power</th>
<th>No load consumption</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td></td>
<td>0.5W</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Active mode power limits</th>
<th>Rated power</th>
<th>Average efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 W to 1 W (<1 W)</td>
<td></td>
<td>0.5 x Rated power</td>
</tr>
<tr>
<td>>1 W to 49 W (<51 W)</td>
<td></td>
<td>(\geq 0.09 \times \ln(\text{Rated power}) + 0.5)</td>
</tr>
<tr>
<td>>49 W (>51 W)</td>
<td></td>
<td>(\geq 0.85)</td>
</tr>
</tbody>
</table>

Figures in () are for ErP limits

Measurement Technique

The US Environmental Protection Agency (EPA) has devised a procedure for measuring the no load power consumption and active mode efficiency of external supplies. This procedure has been adopted as an acceptable test method to demonstrate compliance with Energy Star, California Energy Commission, EISA and the ErP. The document can be found on the www.energystar.gov website and is titled “Test Method for Calculating the Energy Efficiency of Single-Voltage AC-DC and AC-AC Power Supplies” and is dated 11th August, 2004. This document sets out a standardized test method including test room conditions, accuracy of measuring instruments, quality of applied mains voltage and accuracy of load conditions. The document also details the information that is required for the test report.

Marking Requirements

To demonstrate compliance with the Energy Star and CEC requirements a mark must be placed on the product. The mark is made up of a Roman numeral which, at the time of writing, should be a minimum of IV to show compliance with current requirements of CEC, EISA and ErP or a V to show compliance with Energy Star.

While it is apparent that not all applications and equipment that utilize external power supplies need to comply with these environmental standards external power supply designs are being constantly upgraded to meet the latest no load power consumption and active efficiency standards. Very low standby power component power supplies with ever increasing efficiency are also being introduced by the leading manufacturers to support energy efficiency in all types of equipment.
• Energy Efficiency of Component Power Supplies

It is easy to define active efficiency and no load power requirements of external power supplies but harder to define for component power supplies. External power supplies are considered a product in their own right with specific legislation but component power supplies are not.

Energy efficiency of component supplies relates to the end application when it falls within one of the product groups that Energy Star list (see next page). A product group may contain several products, for example the product group ‘imaging equipment’ covers digital duplicators, mailing machines, printers, scanners and all in ones.

In the case of a simple printer, the energy efficiency requirements depend on the printing technology and the format size. The same power supply used in different types of printer will have differing energy efficiency effects. In imaging equipment for example, there are two ways of demonstrating Energy Star compliance. One is to use the Typical Electricity Consumption (TEC) method; the other is to use the Operational Mode (OM) method.

The TEC approach reflects assumptions about how many hours a day the product is in general use, the pattern of use during those hours and the default delay times that the product has before entering a low power or sleep mode. Electricity consumption is measured in the form of accumulated energy used and converted to power by dividing by the test period.

The calculation takes into account that there will be two periods of use per day with a low power mode in between simulating a lunch break and it also assumes that there will be no weekend usage.

The TEC value is derived from the various energy measurements taken during active usage, sleep mode and auto off periods. The maximum allowable TEC value is dependant upon the format size, product speed (images per minute) and marking technology.

The OM approach is to measure power during the ready, standby and sleep modes and also to measure the default time period until the product enters sleep mode. To be compliant with Energy Star, the product must to meet 3 criteria:-

• The default time to entering sleep mode must be less than a given value in minutes, depending on the product format and speed (images per minute) for imaging equipment except for mailing machines. For mailing machines the default sleep time delay is only dependant on speed (mail processed per minute).

• The standby power consumption must be less than 1 W for small and standard format products without fax capability or less than 2 W for small and standard format products with fax capability. For large format product and mailing machines there is currently no limit.

• The sleep power must be less than a given value according to type of machine, format size and printing technology. There is a base figure for each case and this can be increased by the type of functions that the product has beyond the basic print engine

From this it can be seen that factors other than the power supply contribute greatly to the energy efficiency rating of an imaging equipment application.
Legislation

Energy Star Products

- **Appliances**
 - Clothes washers
 - Dehumidifiers
 - Dishwashers
 - Freezers
 - Refrigerators
 - Room Air Cleaners & Purifiers
 - Water Coolers
 - Vending Machines

- **Commercial Food Service Equipment**
 - Commercial Dishwashers
 - Commercial Fryers
 - Commercial Griddles
 - Commercial Hot Food Holding Cabinets
 - Commercial Ice Machines
 - Commercial Kitchen Package
 - Commercial Ovens
 - Commercial Refrigerators & Freezers
 - Commercial Steam Cookers

- **Computers & Electronics**
 - Audio / Video
 - Battery Chargers
 - Combination Units, TV/DVD & VCR/DVD
 - Computers
 - Cordless Phones
 - Digital to Analog Converters
 - Displays
 - DVD & Blu Ray Products
 - Enterprise Servers
 - External Power Adapters
 - Imaging Equipment
 - Set-top Boxes & Cable Boxes
 - Televisions

- **Heating & Cooling**
 - Air Conditioning, Central
 - Air Conditioning, Room
 - Boilers
 - Dehumidifiers
 - Fans, Ventilating
 - Furnaces
 - Heat Pumps, Air Source

- **Heating & Cooling...cont.**
 - Heat Pumps, Geothermal
 - Home Sealing, Insulation & Air Sealing
 - Light Commercial Heating & Cooling
 - Room Air Cleaners & Purifiers

- **Lighting and Fans**
 - Commercial LED Lighting
 - Decorative Light Strings
 - Fans, Ceiling
 - Light Bulbs (CFLs)
 - Light Fixtures
 - Residential LED Lighting

- **Plumbing**
 - Water Heater, Gas Condensing
 - Water Heater, Heat Pump
 - Water Heater, High Efficiency Gas Storage
 - Water Heater, Solar
 - Water Heater, Whole Home Gas Tankless

As each product type needs to meet differing requirements to comply with Energy Star it is not possible to produce component power supplies which guarantee that equipment will be Energy Star compliant.

The functions that the end application runs in standby or sleep mode, the time taken to enter standby mode and the average energy consumed within a working day must all be taken into account.

The latest component power supply designs minimize no load power consumption and maximize active efficiency by utilizing green mode control ICs and so provide OEM’s with the best possible starting point enabling the design and manufacture of Energy Star compliant product.
Technology Editorial 1

• 95% High efficiency power supply changes the way high reliability systems are designed

The size or power density of a power supply is a key criteria when selecting the optimum product for a given application. In applications where fans are not desirable due to noise or reliability concerns then efficiency becomes of primary concern. Power supply technology has evolved to a point where efficiencies in the 90-95% range are available. To put this into context a typical power supply in the 1980’s would have been in the region of 75% efficient.

A designer by considering efficiency as an important criteria, can make fundamental design decisions that effect the overall system design in a positive way by:

1) Eliminating or reducing the need for system fan cooling
2) Reducing the overall size and weight of the system
3) Reducing the internal temperatures of the system and improving reliability
4) Enhancing system reliability
5) Reducing overall energy usage and the end user operating costs

Size and weight are prime considerations in the selection of power supplies. You can always find a smaller power supply, or design one, by including a fan to provide forced air-cooling. You might save one-third to one half of the total volume of a typical unit in this way. One disadvantage of this approach is fan noise which is often restricted in applications such as audio systems, IT applications, medical devices and military systems. Other problems include a significant reduction in reliability as the fan is likely be the only moving part in the power supply and adds a maintenance problem. In a high reliability design the fan will need to be monitored creating a need for additional circuitry. Due to these issues, many system designers are now looking to utilize convection or conduction cooled power supplies to power their equipment. Minimizing component-count will help in reducing size and cost, but this has limitations.

Equipment must be reliable in a variety of environments meaning that compromises with respect to immunity to interference (EMC/EMI/RFI) and production of conducted or radiated emissions cannot be tolerated.

Finally, we need to take account of green legislation including RoHS, no load or standby power consumption and efficiency, particularly if equipment is going to be sold around the world. The use of RoHS components is obligatory and designing for the highest possible efficiency will not only help in meeting present and future environmental legislation but will also help to ensure best performance from convection-cooled power supplies. Breakthrough technologies that have a dramatic impact on power supply design are rare. Advances in power semiconductor technology have had the most impact, followed by improvements in magnetic materials and capacitors. Reducing power supply size without compromising performance means that you have to work towards incremental improvements in every aspect of the design, both electrical and mechanical.
Technology Editorial 1

The size - power - efficiency trade off

The surface area available to provide cooling is the limiting factor in how much heat you can dissipate from a convection-cooled power supply – one that doesn’t need a fan. It follows that the more efficient you make the power supply, the less heat you’ll need to remove and the smaller the unit can be. What may appear to be small differences can have great impact here. If you can buy or design a power supply that is 95% efficient, versus one that’s 90% efficient, the 5% difference in efficiency means you need to remove less than half of the heat of the less efficient design. For a 250 Watt power supply, this means 14.6 W less heat to be dissipated. In systems designed for global use a power supply with a high efficiency across an 85 – 264 VAC input range is desirable. Efficiency will also be affected by load – most power supplies operate at maximum efficiency at 80-90% of rated load. It pays to check out the efficiency you can expect in your individual application. For example, most IT equipment averages at 30 – 40% of its maximum load in typical operation and the efficiency of the power system will vary accordingly.

The frequency - size - efficiency trade off

One way to reduce the size of magnetic components and capacitors is to increase the switching frequency of the converter. However, switching losses increase with frequency. The trade-off for efficiency and switching frequency in a typical 200 W power supply produced during the last few years is shown in Figure 1.

![Figure 1: Effect on efficiency of reducing component size by increasing switching frequency](image)

Clearly, there is a compromise between size, efficiency, switching frequency, reliability, lifetime, cooling technique and cost for a given power rating.
Designing for 90%+ efficiency

The best of today’s 250 W, convection-cooled power supplies operate at over 90% efficiency across an input voltage range of 90 to 264 VAC. This level of efficiency is essential in order to keep within an industry-standard 6 x 4 inch footprint while ensuring adequate heat dissipation without a cooling fan or large external heatsinks. Over 90% efficiency can only be achieved with near lossless switching in the active power factor correction circuit, the main converter(s) and the rectifiers.

A diagram for a 250 Watt AC/DC power supply that achieves up to 95% efficiency at 240 VAC input and 92% efficiency at 90 VAC input is shown in Figure 2.

From the outset achieving high efficiency was the primary design goal for this power supply. Consequently, for each stage the power loss budget was determined and this drove the choice of circuit topology. Power losses were minimized in each stage, striving to save every mW of unnecessary dissipation. For example the input filter for the power supply shown above uses very low resistance winding wire that virtually eliminates I^2R losses in the chokes.

A quasi-resonant, lossless switching, power factor correction circuit operates in discontinuous mode. Its operating frequency varies between 30 kHz and 500 kHz to achieve Zero Current Switching (ZCS) throughout the specified range of loads and input voltages.

The ZCS power factor correction scheme is important because it ensures that the voltage switches when the current is truly at zero, thereby eliminating switching losses. The main converters are a fixed frequency resonant half-bridge design, phase shifted by 90°, again with lossless ZCS. Two transformers are employed; the combination has lower losses than if one larger transformer had been utilized.
Combining the outputs of two converters that are 90-degrees out of phase reduces ripple level and doubles ripple frequency.

A feedback loop monitors the power supply output and varies the boost converter voltage, which in turn varies the voltage at the input to the main converters. The primary purpose of the boost converter is to boost the PFC voltage of approximately 380 to 420 VDC. This enables the design of the main converters to be optimized around tightly defined voltage parameters, another factor that helps to achieve high efficiency. The final stage uses synchronous rectification instead of conventional diodes as this greatly reduces power loss. Timing for the boost converter, main converters and synchronous rectifiers is precisely controlled to achieve accurate ZCS. A crystal-controlled clock is used as the timing reference and a divider network is employed to get to the desired switching frequency. Using this approach is crucial for the efficient operation of synchronous rectifiers, especially for higher output voltages. This power supply architecture results in high efficiency across a wide range of loads and input voltages, as Figure 4 demonstrates.
A further benefit of ZCS is the low level of both conducted and radiated emissions as well as the output ripple and noise. The power supply referred to in this paper exhibits less than 90mV peak-to-peak ripple and noise at 20 MHz bandwidth and is below the level B limit line for EN55022 for conducted and radiated emissions. When tested against the stringent MIL-STD 461F CE102 for conducted emissions this type of power supply passed with considerable margin opening the door in a range of high reliability applications without excessive EMI filtering and screening being needed.

Creative mechanical design

The thermal performance of a power supply can be greatly improved through creative mechanical design. Avoiding hot spots and ensuring the best possible air-flow around components are both important. XP Power’s CCM250 (Figure 5), has input chokes stacked above other components to save board space. Normally this might create hotspots but the low-loss design of the chokes prevents them.

Figure 5: XP Power’s CCM250 power supply uses creative mechanical design to pack a 250 W (300 W peak) convection-cooled power supply into a 6 x 4 x 1.5 inch format.
All heat-generating components, including the power factor correction choke, are bonded directly to the U-channel chassis, which doubles as an effective heatsink. Control circuits are placed on daughter cards mounted at 90 degrees to the main printed circuit board. In other words, full use is made of all the available space by thinking about the mechanical aspects of the unit in 3D at the outset of the design.

Applications for this high efficiency technology

• Sealed Military Systems

The combination of high efficiency and the heat sinking of components to the U channel enabled a designer to use this type of power supply in a completely sealed enclosure for a military battery charger that needed to be waterproof and dust proof. The high efficiency PSU helps eliminate the fan and improve reliability. The other benefit of the CCM250 is the excellent EMI performance that enabled the customer to meet MIL-STD 461F CE, CS, RE & RS for Army Ground Applications.

• Green IT Systems

While most equipment designers don’t operate the equipment they design – energy costs are still very much of concern for the end users especially in applications that operate 24/7.

Consider this example – using a high efficiency PSU compared to a less efficient power supply that uses cheaper components and less efficient technology may mean an improvement of 15% efficiency with only a small increase in the cost of the PSU. At typical energy costs of 12 cents per kWhour, and an average load of 200 W the end user will use substantially less energy per year and achieve cost savings of more than $40 per year. The high efficiency technology just paid for itself in less than one year!

Conclusion

Combining the best of proven design technologies with creative mechanical design has led recently to the introduction of units that can reach up to 95% efficiency, a figure thought impossible only a few years ago. Further incremental improvements will be harder to achieve, but the decades of experience that many engineers now have in power supply design, coupled with advances in semiconductor technology, will make them possible. By considering efficiency alongside cost and size when you select a power supply you can improve overall system cost, performance and reliability.
Putting the data into power supply datasheets

Contents

- Input Characteristics
 - Input Voltage Range
 - Earth Leakage Current
 - Inrush Current
- Output Characteristics
 - Overload Protection
 - Remote Sense
 - Output Accuracy and Minimum Loads
 - Output Ripple and Noise
- Efficiency
- Reliability, Temperature and Cooling
- EMC

Why is it that seemingly similar power supplies have significantly different performance and reliability characteristics? The answer may lie in the specification detail that can be missing from some data sheets, available only in the long-form data/application notes or may even be due to “specmanship”.

For this exercise we’ll look at typical data for an AC/DC power supply though many of the issues may equally apply to DC/DC converters.

Input Characteristics - Input voltage range

AC/DC power supplies are typically universal, meaning that they operate over a wide range of input voltages, normally from 85 or 90 VAC up to 264 VAC. This feature allows a single product to operate worldwide without changes in configuration of the input stage. Some products utilize automatic input voltage range selection giving two operating ranges; typically 90 to 132 VAC & 180 to 264 VAC. Universal input power supplies provide better immunity to supply disturbances in some circumstances and this may be a benefit.

If the power supply is to be used close to its full power capability within the application it is important to check the specification details on the available output power in the low input voltage area where some products de-rate by as much as 20 or 30%. This means that they may be operating outside of specification when operating from nominal 100 VAC or 115/120 VAC supplies or at the very least may infringe the design margins of the end equipment. Ignoring this de-rating in the available output power will seriously affect the reliability and life time of the power supply and therefore the end equipment.

De-rating the power supply output power at low input voltages is common in lower cost universal input power supplies and is normally due to the limitations of the active power correction boost converters.
Earth leakage current

Earth leakage current is a parameter which varies widely from product to product. The earth leakage current is largely a consequence of EMC filtering within the power supply and is normally only a key consideration in medical applications, equipment using multiple AC/DC products or where external EMC filters are utilized to reduce overall system noise.

Inrush Current

A key consideration affecting the selection of fuses, filters and switchgear is the inrush current at the point of application of the AC power. The maximum inrush current is usually specified in the data sheet however there is more to this than a simple maximum value.

In lower power, lower cost products the inrush limiting is typically via a simple NTC thermistor which will provide protection from a “cold start” but may take a minute or more to return to its initial value after switch off. This results in an inrush current many times the specified maximum during an off/on cycle even with a relatively long delay. The inrush current is also likely be specified at 25 ºC and may be significantly higher even for a cold start in higher ambient temperatures. In products above a few hundred watts, this thermistor is likely to be taken out of circuit once the output voltage is established, to remove unnecessary power dissipation, removing this as an issue.

Inrush current is an important factor to be considered to avoid nuisance tripping of fuses and circuit breakers as well as reliability of switches and filtering. The fuse rating given in some data sheets is usually the rating of the internal fuse which is designed to operate only in the event of catastrophic failure and is not user replaceable. Determining the value of the equipment fuse needs to take into account the normal maximum running current, the inrush current and the effects of aging. The equipment fuse should also only be required to operate under catastrophic failure conditions as the electronic power supply overload protection will cater for any problems on the DC side.

Output characteristics - Overload protection

All power supplies offer overload protection to protect both the power supply and the load tracking and wiring from overheating. This may come in a number of different guises or characteristics.

In low power products a trip and restart or “hiccup” mode is common as this helps to keep costs down by utilizing primary control schemes. Trip & restart overload schemes are generally unsuitable for loads involving high start up currents such as electromechanical equipment, lighting equipment or applications which have a high capacitive element, as start up may be unreliable and variable even from unit to unit. This overload characteristic is also unsuitable for direct battery charging applications. With these types of load a constant current overload characteristic is desirable.
Remote Sense

Low voltage high current applications will benefit from products which offer remote sense where the output voltage can be measured at the point of load. This feature is particularly desirable where the load is variable. If the load is relatively constant then a simple user adjustment of the output voltage will be adequate and more readily available though may result in other voltage rails also being adjusted by the same percentage in multiple output supplies where the additional rails are often semi-regulated.

Output accuracy and minimum loads

Output accuracy or regulation is specified in many different ways by various manufacturers. It should encompass line regulation, load regulation, cross regulation (for multiple output supplies), transient response, initial set accuracy and temperature coefficient. These parameters can be specified over differing input ranges, load ranges, load step changes and temperature ranges etc. While these items can be presented in many ways the majority of single output supplies will have comparable performance. Perhaps the most important consideration is for multiple output units where the performance can be very different.

Single output power supplies rarely require a minimum load but multiple output units often require minimum loads on one or more outputs and this should be made clear on the product data. Minimum loads are normally specified to reduce the effects of cross regulation between outputs and to maintain the output accuracy within the specified limits. These minimum loads will need to be considered in the system design and where necessary components added to ensure that they are met.

As standby/no load power consumption requirements are introduced, the addition of minimum loads becomes a real system performance issue and other solutions are required. This is particularly true in low power applications where features such as inhibit are rare due to market cost requirements and the primary control systems in general use.

Output ripple & noise

Ripple & noise is one of the product performance specifications which is most open to interpretation, making comparison from the data sheet difficult if not impossible. The main variables are the measurement bandwidth and the use of various external components and measurement techniques. The only real way to compare performance is to measure the products under the same measurement regime.

Efficiency

Most data sheets will offer a figure for efficiency allowing the user to quantify the waste heat generated within the end equipment. The efficiency of a power supply will vary dependant on the load and input voltage applied, so it is important to understand the unit’s efficiency under the operating conditions of the application. Efficiency during operation at low line is typically lower than at high line and may vary by as much as 6-7%. The most important parameter is the worst case efficiency in order to understand the maximum waste heat generated by the supply.
The drive in power supply development is to increase efficiency in order to reduce the physical size of the product and reduce power consumption. This is also being driven by the standby/no load power and average active efficiency requirements set out in legislation such as Energy Star, CEC, EISA and ErP.

Power density specifications are being increasingly used by power supply and dc/dc converter manufacturers to convey advancement in power technology & efficiency. If these watts per cubic inch specifications are compared it is essential to ensure that the products have similar specifications and do not require external components to meet various specification requirements.

Reliability, Temperature & Cooling

The normal measure of reliability of power converters is given as Mean Time Between Failure (MTBF). The MTBF is normally calculated based on the predicted failure rate of the components utilized within the product, a so called parts count method. When comparing the MTBF of various supplies there are a number of key parameters to check to ensure that the specifications are indeed comparable. Firstly the methodology needs to be identical; typical methods are MIL217 at its various issue levels and Bellcore RPP (now managed by Telcordia Technologies). These two methodologies will give very different results and cannot be compared to one another. Where the MTBF is given to the same specification it must also be stated under the same environmental conditions to prove a useful tool to the system designer.

The most influential factor in terms of reliability and lifetime is the ambient temperature and effective cooling of the power supply. Convection cooled products need adequate space to cool effectively and forced cooling requirements need to be carefully considered to ensure that the product is adequately cooled in the specific application. Manufacturers are increasingly providing key measurement points within the sub assembly to ensure that the product will be both safe and reliable and to ensure adequate lifetime.

Airflow is another important consideration. Be aware that some products specify an airflow rate that may be difficult to achieve in practice e.g. 20 – 30 CFM. As a guide, look for a required airflow less than 15 CFM. Typically, XP’s products require 10 – 13 CFM.

The 3” x 5” CLC175 AC/DC power supply from XP Power is capable of delivering its 175 W full load output with only 10 CFM airflow.
EMC

Datasheets include EMC specifications. Open frame products include conducted emissions and conducted immunity specifications with some providing information on radiated emissions and radiated immunity, some may require additional components to meet the stated performance so these should be considered when selecting the product for the application. External power supplies must provide specifications for both conducted and radiated EMC performance as these are considered stand alone products. Typically products are evaluated using passive loads in an ideal test set-up which is unlikely to be replicated in the end application so choosing a supply with local engineering support and test facilities will be an advantage during the end product development.

Summary

Power supply and DC/DC converter data sheets contain a lot of information which needs careful consideration when applied to the end application. The data is generated with the power supply or converter in isolation and in some instances additional components are required to meet the various parameters. Cooling and de-rating information may differ significantly between products though this is not always apparent in short form data and efficiency data is normally given under best case rather than worst case conditions. How well the power supply performs in the end application is the key consideration and a study of the long form data and application notes will often provide the detail required to select the best power solution for the system.
Technology Editorial 3

• Medical power supplies: trends, challenges and design approaches

Contents

• Techniques for managing the design trade-offs
• How small can they get?

Medical electronic equipment is getting smaller. Of course, this could be said of all electronic equipment but it is in the medical area that pressure for size and weight reduction is greatest. Not only is the hospital bedside environment very space-constrained but there is a trend for more equipment to be used in the home, in doctors’ offices, and even in cars and on planes. This is creating particular pressure on power supply manufacturers to reduce the size of their products.

In the last 10 years a typical convection-cooled, 100W AC/DC power supply has shrunk from a 4 x 7 inch footprint in 1998 to just 2 x 4 inches today, a reduction of over 70%. This size reduction has had to be managed carefully. Smaller packages mean less area for heat dissipation, which in turn requires higher efficiency. This article explains some of the main design issues and briefly introduces some of the most effective techniques that are now employed to achieve power system design goals in medical applications.

Through both empirical measurement and calculation, estimates of the maximum power loss that a chassis mount or open frame power supply can dissipate as heat for a given footprint are shown in Figure 1. The figures are based on using convection cooling and on maintaining compliance with safety agency requirements. They also take account of providing reasonable operating life and acceptable reliability limits. Forced air cooling can improve the power rating considerably, but at the expense of decreased system reliability, fans are fundamentally less reliable than the other power system components and they add to system size and noise. Fan noise is very undesirable in medical applications.

![Figure 1: The maximum safe heat dissipation vs. size for power supplies used in medical applications](image)

Maximum Power Loss (W) Maximum Heat Loss versus Unit Size

0.0 10.0 20.0 30.0 40.0 50.0 60.0
3 x 1.5 x 0.8 4 x 2 x 1.2 4.5 x 2.5 x 1.2 5 x 3 x 1.3 5.5 x 3.7 x 1.36 6 x 4 x 1.6

Size (3 x x 1) inches
Figure 2 then shows how power loss translates into required efficiency.

For example, taking an industry standard footprint of 3 x 5 inches, convection cooling can effectively remove about 18 W of waste heat. Extrapolating from the 20 W power loss curve in Figure 2, a 120 W power supply needs to be at least 86% efficient for convection cooling to be sufficient.

![Figure 2: The minimum efficiency required for a given power supply output to ensure compliance with safety standards](image_url)

Figure 2 also shows the dramatic effect that a relatively small improvement in efficiency can have on the available power from a power supply for a given heat dissipation. Taking the 20 W power loss curve, an efficiency gain from 88% to 93% would enable an power supply to deliver over 250 W rather than around 150 W, within a given footprint.

For the power supply designer, size and efficiency are usually the most important trade-offs. Increasing the switching frequency means that smaller components can be used – notably capacitors and inductors. However, switching losses rise and a power supply that may be 92% efficient at 30 kHz will be only 83% efficient at 200 kHz. Reliability is always of paramount importance in medical applications, so keeping the power system running well within its maximum ratings is always desirable. Finally, cost is the ever-present final determinant of a power supply’s suitability for a given application.
Techniques for managing the design trade-offs

Despite the substantial reductions in power system size over the last decade, no single design leap has made this possible. Rather, a combination of small improvements in both design techniques and component technologies have come together to create the end result. Taking a power supply from input to output, these are some of the design approaches that are now adopted.

Two stage input filters use high permeability cores to minimize size while providing high common mode and differential noise reduction. Smaller footprints can be realized by stacking components vertically. This can also improve cooling through better airflow.

In many power supplies, it has become economical to use silicon carbide diodes in power factor correction circuits. These need no snubber circuits, reducing component count and saving space while giving a typical 1% boost to efficiency.

The main converter topology is critical to efficiency. For power supplies in the 100 W to 200 W range, a resonant topology is often chosen. This can virtually eliminate switching losses, enabling smaller heatsinks to be used - so contributing to the dual goals of smaller size and higher efficiency. In some cases, ceramic heatsinks can replace metal ones. This results in lower noise because the heat sinks are not subject to capacitive coupling with the drain connections of the switching MOSFETs. Simplified filtering can then be used. An additional advantage of ceramic heatsinks is that smaller creepage distances can be used, compared with those needed for conductive metal heatsinks, so further board space savings are achieved.

The falling price of power MOSFETs means that they are now becoming common as the main rectifier of switching power supplies. Efficiency improvements of more than 40% in this part of the circuit are possible. For example, a 20 A diode with 0.5 V forward voltage dissipates 10 W, whereas a MOSFET with an 'ON' resistance of, say, 14 mΩ at 100 ºC dissipates just 5.6 W. Once again, ceramic heatsinks can be used to advantage.

Lastly, control circuits have been greatly simplified in recent years, largely through higher integration of semiconductor functions. Application specific chips are now available that can provide the main converter voltage and a host of automatic protection features. Comprehensive monitoring and control signals are also more easily implemented thanks to more highly integrated power management devices.

How small can they get?

Figure 3 shows XP Power’s ECM140 - an example of a compact, efficient power supply that’s available today. It has a 3 x 5 inch footprint and is rated at 120 Watts with convection cooling or 148 W with forced-air cooling. A 12 V fan supply is included in the design, which has a typical efficiency of 88%. Later this year (2010), AC/DC switching power supplies with medical approvals will take efficiency to levels well in excess of 90%. This will enable 100 Watt convection cooled units to be compressed into a 2 x 4 inch footprint.

Figure 3 (right): XP Power’s ECM140 adopts some of the techniques described to deliver 120 W from a 5 x 3 inch footprint, with 88% typical efficiency enabling convection cooling at this power level
Technology Editorial 4

- **Digital signals and controls**

Digital signals and controls are in increasing demand in building management, telecommunications and networking applications requiring intelligent microcontroller based interfaces to be incorporated into the power supplies which are embedded within the overall system.

An example of such an interface developed by XP Power and implemented on its EMH250 and 350 high density power supplies enables control of a number of power supply functions and monitoring of various parameters.

Communication is achieved using the industry standard PMBus protocol over a three wire (SDA, SCL & Gnd) I2C interface. The power supply acts as the slave device and is accessed via a unique 7-bit address allowing up to 30 individual units to communicate over a common bus.

Controls

The digital interface allows the output voltage to be adjusted via the PMBus and the microcontroller also activates the overload protection which can also be programmed via the Bus. The microcontroller can be factory programmed to cater for application specific requirements such as high peak loads & timed power boost. As standard the interface allows voltage adjustment of +/-10% and overload protection adjustment from 0 – 110%.

Signals

The following parameters are measured by the microcontroller and communicated via the PMBus:
- Output Voltage
- Output Current
- Fan Supply Voltage
- Internal Ambient Temperature
- Fan Status (Fan warning alert after 30 seconds. Fan fail alert after 1 minute 30 seconds)

Supported PMBus Commands

<table>
<thead>
<tr>
<th>Command Code</th>
<th>Command Name</th>
<th>SMBus Transaction Type</th>
<th>Number of Data Bytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>81h</td>
<td>STATUS_FANS_1_2</td>
<td>Read Byte</td>
<td>1</td>
</tr>
<tr>
<td>8Ah</td>
<td>READ_VCAP</td>
<td>Read Word</td>
<td>2</td>
</tr>
<tr>
<td>8Bh</td>
<td>READ_VOLT</td>
<td>Read Word</td>
<td>2</td>
</tr>
<tr>
<td>8Ch</td>
<td>READ_IOUT</td>
<td>Read Word</td>
<td>2</td>
</tr>
<tr>
<td>8Dh</td>
<td>READ_TEMPERATURE_1</td>
<td>Read Word</td>
<td>2</td>
</tr>
<tr>
<td>8Eh</td>
<td>READ_VFAN*</td>
<td>Read Word</td>
<td>2</td>
</tr>
<tr>
<td>8Fh</td>
<td>VOLTAGE_TRIM*</td>
<td>Write Byte</td>
<td>1</td>
</tr>
<tr>
<td>8Ch</td>
<td>CURRENT_LIMIT_TRIM*</td>
<td>Write Byte</td>
<td>1</td>
</tr>
</tbody>
</table>

These are MFR_SPECIFIC commands
Data transfer

All data transactions are initiated by a START (S) bit where the data line (SDA) is pulled from low to high while the clock (SCL) is held high. Subsequent to this the 7-bit device address is sent followed by a WR bit (R/W=0) and then an acknowledge (A) bit. Acknowledge bits are sent from the slave to the master and vice versa depending on the transaction type. Following this the 8-bit PMBus command is sent followed by an A bit. This start procedure is standard for all commands and any differences will be found by the second A bit.

All transactions end with a stop (P) bit. The three standard transaction types are shown below together with a typical timing diagram for the write byte transaction. Grey boxes indicate that the data is being transferred from the slave to the master. For further information refer to the PMBus 1.1 specification.

Write Byte transaction

<table>
<thead>
<tr>
<th>1</th>
<th>7</th>
<th>1</th>
<th>1</th>
<th>8</th>
<th>1</th>
<th>8</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>Slave Address</td>
<td>WR</td>
<td>A</td>
<td>Command Code</td>
<td>A</td>
<td>Data Byte</td>
<td>A</td>
</tr>
</tbody>
</table>

Read Byte transaction

<table>
<thead>
<tr>
<th>1</th>
<th>7</th>
<th>1</th>
<th>1</th>
<th>8</th>
<th>1</th>
<th>1</th>
<th>7</th>
<th>1</th>
<th>1</th>
<th>8</th>
<th>1</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>Slave Address</td>
<td>WR</td>
<td>A</td>
<td>Command Code</td>
<td>A</td>
<td>S</td>
<td>Slave Address</td>
<td>Rd</td>
<td>A</td>
<td>Data Byte</td>
<td>A</td>
<td>P</td>
</tr>
</tbody>
</table>

Read Word transaction

| 1 | 7 | 1 | 1 | 8 | 1 | 1 | 7 | 1 | 1 | 8 | 1 | 1 | 7 | 1 | 1 | 8 | 1 | 1 |
| S | Slave Address | WR | A | Command Code | A | S | Slave Address | Rd | A | Data Byte | A | Data Byte High | A | P |

Block Read transaction

<table>
<thead>
<tr>
<th>1</th>
<th>7</th>
<th>1</th>
<th>1</th>
<th>8</th>
<th>1</th>
<th>1</th>
<th>8</th>
<th>1</th>
<th>1</th>
<th>7</th>
<th>1</th>
<th>1</th>
<th>8</th>
<th>1</th>
<th>1</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>Slave Address</td>
<td>WR</td>
<td>A</td>
<td>Command Code</td>
<td>A</td>
<td>Sr</td>
<td>Slave Address</td>
<td>Rd</td>
<td>A</td>
<td>Data Count = N</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>1</td>
<td>8</td>
<td>1</td>
<td></td>
<td>8</td>
<td>1</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data Byte 1</td>
<td>A</td>
<td>Data Byte 2</td>
<td>A</td>
<td>Data Byte N</td>
<td>A</td>
<td>P</td>
<td></td>
</tr>
</tbody>
</table>

Custom commands

STATUS_FANS_1_2

These bits change depending on the fault condition generated. After 30 seconds of the fan tacho output measuring a fault condition the Fan 1 warning is flagged, after an additional 30 seconds of the tacho output measuring a fault condition Fan 1 failure is flagged.
VOLTAGE_TRIM and CURRENT_TRIM

Both of these commands are used to set internal references to trim the output voltage & set the current limit. Should the device power down the last known values for both outputs are restored on power up.

The VOLTAGE_TRIM command accepts a HEX value between 0 and 65; any value greater than 65 is ignored and assumed to be 65. 0 and 65 will set the minimum and maximum trim values as per the power supply specification with the default set at nominal output voltage during manufacture.

The CURRENT_TRIM command also accepts a HEX value between 0 and 65; again any value above 65 is assumed to be 65.0 and 65 will set the current limit between its minimum and maximum values as per the power supply specification.

READ_VFAN

This command operates in the same way as standard PMBus read voltage commands.

Summary

The modular structure adopted for the device code allows for it to be readily adapted facilitating changes to meet customer and application specific requirements. Additional functions include the ability to interrogate serial number, model number and manufacturing date codes.
Technology Editorial 5

• Custom power without custom pain

It is commonplace for the power supply specification to evolve during the development process and to only be finalized late on. At this point, it is not uncommon to realize that the remaining physical space cannot accommodate an industry standard power supply, or that such units cannot fulfill other technical requirements.

In these circumstances, designing a fully customized power supply in house, or contracting the work to a third party are potential options. However, both routes present technology, cost and time-to-market risks. This is particularly true with off-line power supplies that have to meet stringent safety and EMC standards in order for the end equipment to meet the requirements of regulatory authorities.

The option to create an AC front end and populate a printed circuit board with standard DC-DC modules, sometimes called “bricks”, may appear straightforward but even this apparent simple approach can be fraught with challenges. Why else would brick manufacturers offer training courses to help designers define requirements, avoid instability through source impedance control, minimize EMI, ensure effective decoupling, improve load regulation and develop effective parallel arrays? Overcoming these technical challenges takes knowledge, experience and considerable design time.

A process for creating reliable customized power from standard products

For a growing number of companies, the solution to creating customized power within acceptable time and cost limits is to take the semi-custom route using standard building blocks as the basis for power supplies which meet specific requirements with respect to form, fit and function.

As mentioned earlier, doing this in house requires experience and resources. The electrical design must meet technical requirements in the most economically viable way. Electronic design automation tools are then needed for schematic capture and PCB layout, mechanical layouts need to be modeled and thermal imaging is required to identify potential hotspots. Access to safety and EMI test equipment, and the knowledge of how to use it properly are essential.

The process for designing a reliable semi-custom power supply needs to be the same as that for a standard unit. The typical process adopted by XP Power is shown in figure 1.

![Diagram of design and development process for a semi-custom power supply](image-url)
After receiving a definition of requirements, the company draws up a specification proposal and compliance matrix for the customer. These are reviewed and approved before a detailed project plan is prepared. Development is often an iterative process, so a detailed “Query Log” is maintained to provide a record of decisions taken along the way. Prototype testing is followed by provision of full design verification test results. These include results of temperature cycling and other accelerated aging tests, where appropriate. A detailed design review process is fully documented throughout the development of the product and a production test specification is agreed before it goes into full production. The end result is a customized product that has been created to the same rigorous standards as a standard power supply.

Typical customization options

Customization can be as simple as changing connectors. Other simple modifications include customizing covers with different fixings or producing custom wiring looms to reduce assembly time for the end equipment.

Some of the most common requirements for more comprehensive customization are:

1. **Additional input surge protection.** This may be needed where the power supply is going to operate in a particularly demanding situation involving high-energy surges and voltage spikes. The customization may involve creating a surge suppression circuit on a printed circuit board upon which a standard AC-DC power supply is then mounted.

2. **Power factor correction.** Some companies prefer to manage the DC-DC parts of power system design in-house but do not have the expertise or resources to handle power factor correction (PFC). Standard PFC units may not be suitable, so a customized active or passive PFC module may be developed to fit the form and function needed.

3. **Creating a Eurocard form factor.** Eurocards are widely used in embedded systems but the range of Eurocard power supplies is limited. Designing a Eurocard to take a non-Eurocard format power supply is a common requirement to give the system designer greater flexibility in the choice of power supply.

4. **Eliminating fans.** In some applications, fan cooling is not a viable option. As the only moving electro-mechanical part within a power supply, a fan will always represent a weak point with respect to reliability. Furthermore, the need to clean air filters adds a maintenance task. Where equipment operates in remote environments and maintenance becomes expensive, or where particularly harsh operating conditions limit product life, it’s often possible to design a standard power supply into a convection-cooled package than can be bolted directly to the equipment enclosure.

5. **Integration of batteries and charging circuits.** Some applications require integral battery back-up to protect against failure of the main input supply. Here, the power supply will include a charging circuit for the battery and automatic switching circuits, effectively turning a standard power supply into an uninterruptible power supply (UPS).

6. **Addition of control and monitoring circuits.** Customized control and monitoring can be added to many power supplies and some vendors, including XP Power, have in-house expertise in writing software for these functions. The addition of input and output “OK” signals, temperature sensors and fan speed controllers are popular options.
Example – a customized power supply for a high reliability application

Figure 2 shows a customized power supply for a portable, secure, communications modem used in the field. It was developed around three standard MTC150, 150 Watt DC-DC converters. XP Power added a discrete, 600W AC-DC boost converter with active power factor correction, two DC input conditioning modules, a further commercial DC-DC unit to create a 28V bus, and a 300W DC-AC inverter module. The resulting unit has a 28V battery input, a wide-range input of 10-36V DC, and a universal 90 to 264 VAC input. The outputs are 28 VDC, 12 VDC, and 110 VAC. The power supply was designed in a low-profile form factor with integral heat sink. This unit is a good example of creating a complex product with custom electrical and mechanical elements built around standard modules.

Avoiding problems with agency qualification

Safety agency qualification is required for most off-line power supplies. The cost and time taken to obtain qualification for end equipment is an important consideration so it’s vital that the risk of failure is minimized. Standard power supplies will have already gone through rigorous approvals processes but it is essential to ensure that customized units have been tested to the same standards. A supplier of customized power solutions must be able to provide test documentation that gives a high level of confidence with respect to agency requirements and customers should expect the same level of warranty on the customized power supplies as would be applicable to comparable standard products.

Time-to-market and economics

The balance of quantity and complexity determines the economic viability of semi-custom power supply design. Simple changes can be applied to relatively low cost products for quantities in the low hundreds. Large programs involving complex customization are only likely to be viable where the final value of business to the power supply manufacturer is in excess of $50,000.

Full custom design has a much higher economic entry point and few products will see the light of day in less than 6 months. In contrast, prototype semi-custom power supplies can typically be created in 6 to 12 weeks using field-proven, standard building blocks.
Glossary

Abnormal Failure
An artificially induced failure of a component, usually as a result of ‘abnormal’ testing for regulatory agency safety compliance.

Ambient Temperature
The still-air temperature in the immediate vicinity of a power supply.

Apparent Power
A value of power for AC circuits which is calculated as the product of RMS current times RMS voltage, without taking the power factor into account.

Autoranging Input
An input voltage sensing circuit in the power supply which automatically switches to the appropriate input voltage range (90-132 VAC or 180-264 VAC).

Balun
A transformer which presents a high impedance to common-mode signals and a low impedance to differential-mode signals. It is commonly used on the input of switching power supplies to suppress common-mode noise. See Figure 1.

Bandwidth
A range of frequencies over which a certain phenomenon is to be considered.

Basic Insulation
According to international safety standards (e.g. UL60950, EN60950) basic insulation provides basic protection against electric shock i.e. one level of protection, and the test voltage used is 1500 VAC. Quite frequently, safety standards call for basic insulation between secondary circuits (e.g. between a telecom network and SELV circuits).

Bode Plot
A graphic plot of gain versus frequency for a control loop, typically used to verify control loop stability, including phase margin.

Breakdown Voltage
The maximum AC or DC voltage which may be applied from input to output and/or chassis of a power supply. See Figure 2.

Bridge Rectifier
A full wave rectifier circuit employing four rectifiers in a bridge configuration.

Brown-out
Condition during peak usage periods when electric utilities reduce their nominal line voltage by 10% to 15%.

BSMI
Bureau of Standards Metrology & Inspection. Certification body for Taiwan.

Burn-in
Operating a newly manufactured power supply, usually at rated load and elevated temperature, for a period of time in order to force component infant mortality failures or other latent defects before the unit is delivered to a customer.
Glossary

CAN Bus
Controller area network bus is a 2 wire system used for high speed data communication ideally suited to harsh, electrically noisy environments.

Capacitive Coupling
Coupling of a signal between two circuits, due to discrete or parasitic capacitance between the circuits.

CCC
China Compulsary Certification. Certification scheme for China for product safety and EMC, issued by China Quality Control (CQC).

Center Tap
An electrical connection made at the center of a transformer or inductor winding, usually so as to result in an equal number of turns on either side of the tap.

Centering
The act of setting the output voltage of a power supply under specified load conditions, usually an auxiliary output of a multiple output power supply with all outputs at half load.

CISPR
International Special Committee on Radio Interference.

Clearance Distance
The shortest distance (through air) separating two conductors or circuit components.

Common-mode Noise
The component of noise that is common to both the live and neutral conductors with respect to ground, also the component of noise that is common to both the DC output and return lines with respect to input ground.

Compliance Voltage
The output voltage of a constant current power supply.

Conducted Immunity
The immunity of a product to bursts of short duration, fast rise time transients that may be generated by the switching of inductive loads, contactors etc.

Configurable
See Modular

Constant Current Limiting Circuit
Current-limiting circuit which holds output current at some maximum value whenever an overload of any magnitude is experienced.

Constant Current Power Supply
A power supply which regulates its output current, within specified limits, against changes in line, load, ambient temperature and time.

Constant Voltage Power Supply
A power supply designed to regulate the output voltage for changes in line, load, ambient temperature and drift resulting from time.

Creepage Distance
The shortest distance between two conducting parts measured along the surface or joints of the insulating material between them.

Crest Factor
In an AC circuit, crest factor is the mathematical ratio of the peak to RMS values of a waveform. Crest factor is sometimes used for describing the current stress in AC mains supply wires for a given amount of power transferred; the RMS value and hence the losses become greater with increasing peak values.

Cross Regulation
In a multiple output power supply, the percentage voltage change at one output caused by the load change on another output.
Crowbar
An overvoltage protection circuit which rapidly places a low resistance shunt across the power supply output terminals if a predetermined voltage is exceeded. See Figure 3.

Differential Mode Noise
The component of noise measured between the live and neutral conductors, and also the component of noise measured between the DC output and output return. See Ripple and Noise.

Dips and Interruptions
Short input interruptions to simulate the utility supply under various conditions.

Double Insulation
Insulation comprising both basic insulation and supplementary insulation. Double insulation provides two levels of protection and the test voltage is 3000 VAC for IT and industrial equipment, and 4000 VAC for medical equipment.

Distributed Power Architecture (DPA)
This is a power distribution system where the conversion to lower voltages is effected locally near the load. An interim DC voltage is provided from the AC mains or DC bus by a converter. This is then distributed to smaller DC/DC converters. Some versions of this system are also known as Intermediate Bus Architecture (IBA). See page 12.

Drift
The change in output voltage of a power supply over a specified period of time, following a warmup period, with all other operating parameters such as line, load, and ambient temperature held constant.

Dropout
The lower limit of the AC input voltage where the power supply begins to experience insufficient input to maintain regulation.

Dynamic Current Allocation
A system for dual positive outputs such as 5V & 3.3V where the full amount of current may be taken from either output in whichever combination is required. For instance, in a 6A system any value of current from 0A to 6A may be taken from the 3.3V output and the remainder from the 5V or vice versa.

Dynamic Load Regulation
See Transient Response.
Earth Leakage Current
The current that flows through the earth conductor of a piece of equipment under normal conditions. This is limited by legislation. Limits depend upon the application.

Efficiency
The ratio of output power to input power. It is generally measured at full-load and nominal line conditions. In multiple output switching power supplies, efficiency is a function of total output power.

EFT/Burst
See Conducted Immunity.

Eighth Brick
An industry standard package size and pin-out for DC/DC converters. The package size is 2.3" x 0.9" with the pins on a 2.0" spacing. The height is typically 0.3".

Electromagnetic Interference (EMI)
Also called radio frequency interference (RFI), EMI is unwanted high frequency energy caused by the switching transistors, output rectifiers and zener diodes in switching power supplies. EMI can be conducted through the input or output lines or radiated through space.

Enable
Power supply interface signal, often TTL compatible, which commands the power supply to start up one or all outputs.

Equivalent Series Resistance (ESR)
The amount of resistance in series with an ideal capacitor which exactly duplicates the performance of a real capacitor. In high frequency applications low ESR is very important.

Electrostatic Discharge (ESD)
Discharge of static electricity built up when two insulating materials are rubbed together.

ETSI
The European Telecommunications Standards Institute (ETSI) is a non-profit-making organization whose mission is to determine and produce the telecommunications standards that will be used for decades to come. It is an open forum which unites 696 members from 50 countries, representing administrations, network operators, manufacturers, service providers and users.

FCC
The FCC (Federal Communications Commission) is an independent United States government agency, directly responsible to Congress and charged with regulating interstate and international communications by television, radio, wire, satellite and cable.

Filter
A frequency-sensitive network that attenuates unwanted noise and ripple components of a rectified output.

Floating Output
An output of a power supply that is not connected or referenced to any other output usually denotes full galvanic isolation. They generally can be used as either positive or negative outputs. Non-floating outputs share a common return line and so are referenced to one another.

Fly-back Converter
The fly-back converter is the simplest type of switcher. In most cases, it uses one switch and only needs one magnetic element - the transformer. Practical output power from flyback converters is limited to less than 150W. See Figure 5 and page 2.

Figure 5

```
+ +
INPUT

PWM ISOLATION

+ -
OUTPUT
```

Foldback Current Limiting Circuit
Current limiting circuit that gradually decreases the output current under overload conditions until a minimum current level is reached under a direct short circuit. See Figure 6.

Forward Converter
Similar to a fly-back converter but the forward converter stores energy in the output inductor instead of the transformer. See page 3.

Front End
A particular type of AC/DC converter (usually high power) used in distributed power architecture (DPA) and intermediate bus architecture (IBA) systems which provides the DC voltage that is bussed around the system.

Full Brick
An industry standard package size and pin-out for DC/DC converters. The package size is 2.4" x 2.28" with the pins on a 1.90" spacing. The height is typically 0.50" without a heatsink. Four mounting holes are provided for the attachment of heatsinks and to the customer’s board.

Half Bridge Converter
A power switching circuit similar to the full bridge converter except that only two transistors (or diodes) are used, with the other two replaced by capacitors. See page 5.

Harmonic Currents
Current distortion generated by non-linear loads such as the input to a switch mode power supply.

Heatsink
Device used to conduct away and disperse the heat generated by electronic components.

Hiccup Mode
See Trip & Restart Current Limiting

Hi-Pot Test
High potential test. A test to determine if the breakdown voltage of a transformer or power supply exceeds the minimum requirement. It is performed by applying a high voltage between the two isolated test points.

Hold-up Time
The time during which a power supply’s output voltage remains within specification following the loss of input power.

Ground
An electrical connection to earth or some other conductor that is connected to earth. Sometimes the term “ground” is used in place of “common”, but such usage is not correct unless the connection is also made to earth.

Ground Loop
An unwanted feedback condition caused by two or more circuits sharing a common electrical ground line.

Half Brick
An industry standard package size and pin-out for DC/DC converters. The package size is 2.40" x 4.6" with the pins on a 4.2" spacing. The height is typically 0.50" without a heatsink. Four mounting holes are provided for the attachment of heatsinks and to the customer’s board.

Front End
A particular type of AC/DC converter (usually high power) used in distributed power architecture (DPA) and intermediate bus architecture (IBA) systems which provides the DC voltage that is bussed around the system.
Glossary

Hot Swap
Redundant units which may be removed and replaced without the need to power down equipment.

I²C Bus
Inter Integrated Circuit BUS is a serial BUS developed by Philips Semiconductor in the 1980s. Widely used in power management systems. See page 60.

IEC
International Electrotechnical Commission.

Induced Noise
Noise generated in a circuit by a varying magnetic field produced by another circuit.

Inhibit
Power supply interface signal, often TTL compatible, which commands the power supply to shut down one or all outputs.

Input Line Filter
A low-pass or band-reject filter at the input of a power supply which reduces line noise fed to the supply. This filter may be external to the power supply.

Input Voltage Range
The high and low input voltage limits within which a power supply or DC/DC converter meets its specifications.

Inrush Current
The peak instantaneous input current drawn by a power supply at turn-on.

Inrush Current Limiting
A circuit which limits the inrush current during turn-on of a power supply.

Intermediate Bus Architecture (IBA)
See Distributed Power Architecture (DPA).

Inverter
A power converter which changes DC input power into AC output power.

Isolation
The electrical separation between input and output of a power supply by means of the power transformer. The isolation resistance (normally in mega ohms) and the isolation capacitance (normally in pico farads) are generally specified and are a function of materials and spacings employed throughout the power supply.

Isolation Voltage
The maximum AC or DC voltage that may be applied for a short, defined duration from input to output and/or chassis of a power supply.

KETI

Line Frequency Regulation
The variation of an output voltage caused by a change in line input frequency, with all other factors held constant. This effect is negligible in switching and linear power supplies.

Line Regulation
The variation of an output voltage due to a change in the input voltage, with all other factors held constant. Line regulation is expressed as the maximum percentage change in output voltage as the input voltage is varied over its specified range.

Linear Regulator
A common voltage-stabilization technique in which the control device (usually a transistor) is placed in series or parallel with the power source to regulate the voltage across the load. The term “linear” is used because the voltage drop across the control device is varied continuously to dissipate unused power.

Load Regulation
Variation of the output voltage due to a change in the output load, with all other factors held constant. It is expressed as a percentage of the nominal DC output voltage.

Local Sensing
Using the output terminals of the power supply as sense points for voltage regulation.
Logic Enable
The ability to turn a power supply on and off with a TTL signal. A logic low generally turns the supply off; logic high turns it on.

Long Term Stability
Power supply output voltage change due to time with all other factors held constant. This is expressed in percent and is a function of component ageing.

Magnetic Amplifier
A magnetic device used to improve the cross regulation of multiple output AC/DC converters.

Margining
Adjusting a power supply output voltage up or down from its nominal setting in order to verify system performance. This is usually done electrically by a system-generated control signal.

Minimum Load
The minimum load current/power that must be drawn from the power supply in order for the supply to meet its performance specifications. Less commonly, a minimum load is required to prevent the power supply from failing.

Modular
A physically descriptive term used to describe a power supply made up of a number of separate subsections, such as an input module, power module, or filter module.

MOSFET
Metal oxide semiconductor field effect transistor. The device of choice for the main switch in many switch mode power supplies, having much better switching characteristics than bipolar transistors.

MTBF
Mean time between failures. The failure rate of a system or component, expressed in hours, established by the actual operation (demonstrated MTBF) or calculated from a known standard such as MIL-HDBK-217.

Noise
Noise is the aperiodic, random component of undesired deviations in output voltage. Usually specified in combination with ripple. See PARD and Ripple.

Nominal Value
The stated or objective value for a quantity, such as output voltage, which may not be the actual value measured.

Off-line Power Supply
A power supply which operates off the AC line directly, without using a power transformer prior to rectification and filtering.

Open Frame
A power supply with no external metal chassis; the power supply is provided to the end user essentially as a printed circuit board which provides mechanical support as well as supporting the components and making electrical connections.

Operational Insulation
Operational insulation is needed for the correct operation of the equipment, but does not protect against electric shock. Operational insulation provides no levels of protection and typically the test voltage is ≤ 500 VDC.

Operating Temperature Range
See Temperature Range, Operating.

Operational Power Supply
A power supply with a high open loop gain regulator which acts like an operational amplifier and can be programmed with passive components.

Output Current Limiting
An output protection feature which limits the output current to a predetermined value in order to prevent damage to the power supply or the load under overload conditions. The supply is automatically restored to normal operation following removal of the overload.
Output Good
A power supply status signal which indicates that the output voltage is within a certain tolerance. An output that is either too high or too low will deactivate the output good signal.

Output Impedance
The ratio of change in output voltage to change in load current.

Output Noise
The AC component which may be present on the DC output of a power supply. Switch-mode power supply output noise has two major components; a lower frequency component at the switching frequency of the converter and a high frequency component due to fast edges of the converter switching transitions. Noise should always be measured directly at the output terminals with a probe having an extremely short grounding lead. See page 49.

Output Voltage
The nominal value of the DC voltage at the output terminals of a power supply.

Output Voltage Accuracy
For a fixed output supply, the tolerance in percent of the output voltage with respect to its nominal value under all minimum or maximum conditions.

Output Voltage Trim
The adjustment range of a power supply or DC/DC converter via a potentiometer or external programming of voltage, current or resistance.

Overload Protection
An output protection feature that limits the output current of a power supply under overload conditions so that it will not be damaged.

Overshoot
A transient change in output voltage, in excess of specified output accuracy limits, which can occur when a power supply is turned on or off or when there is a step change in line or load. See Figure 7.

Over Temperature Protection (OTP)
A protection system for converters or power supplies where the converter shuts down if the ambient temperature exceeds the converter’s ratings. OTP is intended to save the converter and any downstream equipment in the event of a failure of a fan or such. OTP usually measures the hottest item on board the converter rather than ambient temperature.

Over Voltage Protection (OVP)
A power supply feature which shuts down the supply, or crowbars or clamps the output, when its voltage exceeds a preset level. See Crowbar.

Parallel Operation
The connection of the outputs of two or more power supplies of the same output voltage to obtain a higher output current than from either supply alone. This requires power supplies specifically designed to share the load.

PARD
Periodic and random deviation. A term used for the sum of all ripple and noise components measured over a specified bandwidth and stated in either peak-to-peak or RMS values. See Figure 8.
Peak Power
The absolute maximum output power that a power supply can produce without immediate damage. Peak power capability is typically well beyond the continuous reliable output power capability and should only be used within the defined specification.

Power Factor Correction (PFC)
Standard AC/DC converters draw line current in pulses around the peaks in line voltage. This may be undesirable for several reasons. PFC circuits ensure that the line current is drawn sinusoidally and in phase with the sinusoidal line voltage. See page 29.

Pi Filter (π filter)
A commonly-used filter at the input of a switching supply or DC/DC converter to reduce reflected ripple current. The filter usually consists of two parallel capacitors and a series inductor and is generally built into the supply. See Figure 9.

PM Bus
Power Management bus is an open power system standard used to provide communication between power supplies & converters and other devices utilized in a power system. See page 60.

Post Regulation
A linear regulator used on the output of a switching power supply to improve line and load regulation and reduce output ripple voltage. See Linear Regulator.

Power Density
The ratio of output power per unit volume. Typically specified in W/ln³.

Power Factor
The ratio of true power to apparent power in an AC circuit. In power conversion technology, power factor is used in conjunction with describing the AC input current to the power supply. See page 33.

Power Fail Detection
A power supply option which monitors the input voltage and provides an isolated logic output signal when there is loss of line voltage.

Power Foldback
A power supply feature whereby the input power is reduced to a low value under output overload conditions.

Power Sharing
See Current Share.

Pre-load
A small amount of current drawn from a power supply to stabilize its operation. A bleed resistor usually provides a pre-load. See also Minimum Load.

Pre-regulation
The regulation at the front-end of a power supply, generally by a type of switching regulator; this is followed by output regulation, usually by a linear type regulator.

PSE

Primary
The input section of an isolated power supply that is connected to the AC mains and hence has dangerous voltage levels present.

Programmable Power Supply
A power supply with an output controlled by an external resistor, voltage, current or digital code.

Pulse Width Modulation
A method of voltage regulation used in switching supplies whereby the output is controlled by varying the width, but not the height, of a train of pulses that drive a power switch.
Glossary

Push-Pull Converter
A power switching circuit which uses a center tapped transformer and two power switches which are driven on and off alternately. This circuit does not provide regulation by itself.

Quarter Brick
An industry standard package size and pin-out for DC/DC converters. The package size is 1.45" x 2.28" with the pins on a 2.0" spacing. The height is typically 0.50" without a heatsink. Four mounting holes are provided for the attachment of heatsinks and to the customer’s board.

Radiated Electromagnetic Interference
Also called radio frequency interference (RFI), EMI is unwanted high-frequency energy caused by the switching transistors, output rectifiers and zener diodes in switching power supplies. The portion that is radiated through space is known as radiated EMI.

Radiated Immunity
The immunity of a product to electromagnetic fields.

Rated Output Current
The maximum load current which a power supply was designed to provide at a specified ambient temperature.

Redundancy (N+M)
Power supplies connected in parallel operation so that if one fails, the others will continue delivering enough current to supply the maximum load. This method is used in applications where power supply failure cannot be tolerated. See page 63.

Reference
The stable voltage, generally a zener diode, from which the output voltage of a regulated supply is controlled.

Reflected Ripple Current
The AC current generated at the input of a power supply or DC/DC converter by the switching operation of the converter, stated as peak-to-peak or RMS.

Reinforced Insulation
Single insulation system applied to live parts which provide a degree of protection against electric shock equivalent to double insulation. Reinforced insulation provides two levels of protection and the test voltage used is 3000VAC for IT and industrial equipment, and 4000VAC for medical equipment.

Regulation
The ability of a power supply to maintain an output voltage within a specified tolerance as referenced to changing conditions of input voltage and/or load.

Reliability
The ability of a system or component to perform its required functions under stated conditions for a specified amount of time.

Remote Enable
The ability to turn on electrically the output of a power supply from a remote location.

Remote Inhibit
The ability to electrically turn off the output of a power supply from a remote location via a logic level signal.

Remote ON/OFF
One or other of remote enable or remote inhibit, or a combination of both.

Remote Sensing
A technique of regulating the output voltage of a power supply at the load by means of sensing leads which go from the load back to the regulator. This compensates for voltage drops in the load leads. See Figure 10 and page 42.

![Figure 10](image)

THE X P E R T S I N POWER

The authors are not responsible for the accuracy of the glossary entries provided.
Resolution
For an adjustable supply, the smallest change in output voltage that can be realized by the adjustment.

Resonant Converter
A class of power converter topology which reduces the level of switching losses by forcing either zero voltage across, or zero current through the switching device when it is turned on or off.

Return
The name for the common terminal of the output of a power supply; it carries the return current for the outputs.

Reverse Voltage Protection
A feature which protects a power supply against a reverse voltage applied at the input or output terminals.

RFI
See Radiated Electromagnetic Interference.

Ripple and Noise
The magnitude of AC voltage on the output of a power supply, expressed in millivolts peak-to-peak or RMS, at a specified bandwidth. This is the result of feed through of the rectified line frequency, internal switching transients and other random noise. See also PARD & Noise.

Rise Time
The time required for the voltage in a switching electronic circuit to rise from 10% to 90% of its nominal final value.

Safety Approvals
Third party or agency approvals to internationally recognized safety standards.

Safety Ground
A conductive path to earth that is designed to protect persons from electrical shock by shunting away any dangerous currents that might occur due to malfunction or accident.

Secondary
The output section of an isolated power supply which is isolated from the AC mains and specially designed for safety of personnel who might be working with power on the system.

SELV
Safety extra low voltage. A term generally defined by the regulatory agencies as the highest voltage that can be contacted by a person and not cause injury. It is often specifically defined as 42.4 VAC or 60 VDC.

Sequencing
The desired order of activation of the outputs of a multiple output power supply.

Shock and Vibration
A specification requirement for which a power supply is designed or tested to withstand, such as 20 g shock for 11 milliseconds and 10 g random vibration for 2 hours over a 2-2000 Hz bandwidth.

Short Circuit Protection
A feature which limits the output current of a power supply under short circuit conditions so that the supply will not be damaged.

Signals
Output interface, often at TTL level, of various operational conditions such as power fail and DC OK.

Sixteenth Brick
An industry standard package size and pin-out for DC/DC converters. The package size is 1.3” x 0.9” with the pins on a 1.1” spacing. The height is typically less than 0.4”.

Soft Start
A technique for gradually activating a power supply circuit when the power supply is first turned on. This technique is generally used to provide a gradual rise in output voltages and to limit inrush current.

Standby Current
The input current drawn by a power supply when shut down by a control input (remote inhibit) or under no load.
Glossary

Start-up Rise Time
The time between the output voltage starting to rise and reaching the desired level.

Start-up Time (Start-up Delay)
Time between the application of input voltage and the output voltage being within regulation.

Supplementary Insulation
Independent insulation applied in addition to basic insulation in order to provide protection against electric shock in the event of a failure of basic insulation. Supplementary insulation provides one level of protection and has a test voltage of 1500 VAC.

Surface Mount Technology (SMT)
A space-saving technique whereby special leadless components are soldered onto the surface of a PCB rather than into holes in a PCB. The parts are smaller than their leaded versions and PCB area is saved.

Surge
Part of the conducted immunity suite of tests, designed to simulate a nearby lightning strike.

Switching Frequency
The rate at which the DC voltage is switched on and off during the pulse width modulation process in a switching power supply.

Synchronous Rectifiers or Rectification
A circuit arrangement where the output rectifier diodes of a power supply are replaced with active switches such as MOSFETs. The switches are turned on and off under control and act as rectifiers. This results in considerably lower losses in the output stage and subsequently much higher efficiency. They are particularly useful with low voltage outputs.

Temperature Coefficient
The average percent change in output voltage per degree centigrade change in ambient temperature over a specified temperature range.

Temperature Derating
Reducing the output power of a power supply with increasing temperature to maintain reliable operation.

Temperature Range, Operating
The range of ambient or case temperatures within which a power supply may be safely operated and meet its specifications.

Temperature Range, Storage
The range of ambient temperatures within which a non-operating power supply may be safely stored with no degradation of its subsequent operation.

Thermal Protection
See Over Temperature Protection.

Topology
The design type of a converter, indicative of the configuration of switching transistors, utilization of the transformer, and type of filtering. Examples of topologies are fly-back, forward, half-bridge, full-bridge, and resonant.

Tracking
A characteristic of a dual or other multiple output power supply whereby one or more outputs follow another output with changes in line, load and temperature, so that each maintains the same proportional output voltage, within specified tracking tolerance, with respect to common.

Transient Response
The time required for the output voltage of a power supply to settle within specified output accuracy limits following a step change in output load current or a step change in input voltage.

Trip & Restart Current Limiting
Current limiting circuit which switches off the output when an overload condition is reached. The unit will then try to restart periodically until the overload is removed.

TUV
TUV Rheinland Product Safety Group. An independent German organization which tests products for safety.
UL
Underwriter’s Laboratories Incorporated. An independent, U.S. organization which tests products for safety.

Undershoot
A transient change in output voltage, below output accuracy limits, which can occur when a power supply is turned on or off, or when there is a step change in line or load. See Overshoot.

Universal Input
A power supply’s ability to accept a wide input voltage range (90VAC to 264VAC) without the selection of input range, either manually or electronically (as in auto-ranging input).

UPS
Uninterruptible power supply. A power supply that continues to supply power during a loss of AC input power. This is accomplished by means of a back-up battery and a DC/AC inverter or DC/DC converter.

Under Voltage Lock Out (UVLO)
A protection system for power converters where the converter is deliberately shut down if the input voltage drops below a pre-defined level. Some hysteresis is usually present to prevent the converter oscillating on and off. UVLO is usually needed with battery systems where the voltage decreases gradually with time rather than turning off quickly.

VDE
Verband Deutsche Elektrotechniker. A German organization which tests equipment for public safety and emitted noise.

Voltage Balance
The percentage difference in magnitude between the two output voltages of a dual output power supply where the voltages have equal nominal values with opposite polarities.

Warm-up Drift
The initial change in output voltage of a power supply from turn-on until it reaches thermal equilibrium at nominal line, full load, 25°C ambient temperature.

Warm-up Time
The time required, after initial turn-on, for a power supply to meet its performance specifications.

Zero Current Switching (ZCS)
See Resonant Converter.

Zero Voltage Switching (ZVS)
See Resonant Converter.

- Prefix Codes

<table>
<thead>
<tr>
<th>Prefix</th>
<th>Symbol</th>
<th>Multiplier</th>
</tr>
</thead>
<tbody>
<tr>
<td>exa-</td>
<td>E</td>
<td>1,000,000,000,000,000,000,000,000,000</td>
</tr>
<tr>
<td>peta-</td>
<td>P</td>
<td>1,000,000,000,000,000,000,000</td>
</tr>
<tr>
<td>tera-</td>
<td>T</td>
<td>1,000,000,000,000</td>
</tr>
<tr>
<td>giga-</td>
<td>G</td>
<td>1,000,000,000</td>
</tr>
<tr>
<td>mega-</td>
<td>M</td>
<td>1,000,000</td>
</tr>
<tr>
<td>kilo-</td>
<td>k</td>
<td>1,000</td>
</tr>
<tr>
<td>hecto-</td>
<td>h</td>
<td>100</td>
</tr>
<tr>
<td>deca-</td>
<td>da</td>
<td>10</td>
</tr>
<tr>
<td>deci-</td>
<td>d</td>
<td>0.1</td>
</tr>
<tr>
<td>centi-</td>
<td>c</td>
<td>0.01</td>
</tr>
<tr>
<td>milli-</td>
<td>m</td>
<td>0.001</td>
</tr>
<tr>
<td>micro-</td>
<td>μ</td>
<td>0.000 001</td>
</tr>
<tr>
<td>nano-</td>
<td>n</td>
<td>0.000 000 001</td>
</tr>
<tr>
<td>pico-</td>
<td>p</td>
<td>0.000 000 000 001</td>
</tr>
<tr>
<td>femto-</td>
<td>f</td>
<td>0.000 000 000 000 001</td>
</tr>
<tr>
<td>atto-</td>
<td>a</td>
<td>0.000 000 000 000 000 001</td>
</tr>
</tbody>
</table>
SI Unit Codes

SI Base Units

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Name</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
<td>meter</td>
<td>m</td>
</tr>
<tr>
<td>Mass</td>
<td>kilogram</td>
<td>kg</td>
</tr>
<tr>
<td>Time</td>
<td>second</td>
<td>s</td>
</tr>
<tr>
<td>Electric Current</td>
<td>ampere</td>
<td>A</td>
</tr>
<tr>
<td>Thermodynamic Temperature</td>
<td>kelvin</td>
<td>K</td>
</tr>
</tbody>
</table>

SI Derived Units

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Name</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area</td>
<td>square meter</td>
<td>m²</td>
</tr>
<tr>
<td>Volume</td>
<td>cubic meter</td>
<td>m³</td>
</tr>
<tr>
<td>Speed/Velocity</td>
<td>meter per second</td>
<td>m/s</td>
</tr>
<tr>
<td>Acceleration</td>
<td>meter per second squared</td>
<td>m/s²</td>
</tr>
<tr>
<td>Current Density</td>
<td>ampere per square meter</td>
<td>A/m²</td>
</tr>
<tr>
<td>Magnetic Field Strength</td>
<td>ampere per meter</td>
<td>A/m</td>
</tr>
</tbody>
</table>

SI Derived Units With Special Names

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Name</th>
<th>Symbol</th>
<th>Expression in terms of other units</th>
<th>Expression in terms of SI base units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>Hertz</td>
<td>Hz</td>
<td>s⁻¹</td>
<td></td>
</tr>
<tr>
<td>Energy/ Work/ Quantity of heat</td>
<td>Joule</td>
<td>J</td>
<td>Nm</td>
<td>m² kg s⁻²</td>
</tr>
<tr>
<td>Power/ Radiant Flux</td>
<td>Watt</td>
<td>W</td>
<td>J/s</td>
<td>m² kg s⁻³</td>
</tr>
<tr>
<td>Electric Potential/ Potential Difference/ Electromotive Force</td>
<td>Volt</td>
<td>V</td>
<td>W/A</td>
<td>m² kg s⁻³ A⁻¹</td>
</tr>
<tr>
<td>Capacitance</td>
<td>Farad</td>
<td>F</td>
<td>C/V</td>
<td>m⁻² kg⁻¹ s² A²</td>
</tr>
<tr>
<td>Electric Resistance</td>
<td>Ohm</td>
<td>Ω</td>
<td>V/A</td>
<td>m² kg s⁻³ A⁻²</td>
</tr>
<tr>
<td>Magnetic Flux</td>
<td>Weber</td>
<td>Wb</td>
<td>V s</td>
<td>m² kg s⁻² A⁻¹</td>
</tr>
<tr>
<td>Magnetic Flux Density</td>
<td>Tesla</td>
<td>T</td>
<td>Wb/m²</td>
<td>kg s⁻² A⁻¹</td>
</tr>
<tr>
<td>Inductance</td>
<td>Henry</td>
<td>H</td>
<td>Wb/A</td>
<td>m² kg s⁻² A²</td>
</tr>
<tr>
<td>Celsius Temperature</td>
<td>degree Celsius</td>
<td>°C</td>
<td></td>
<td>K</td>
</tr>
<tr>
<td>Electric Field Strength</td>
<td>Volt per meter</td>
<td>V/m</td>
<td></td>
<td>m kg s⁻³ A⁻¹</td>
</tr>
</tbody>
</table>
Index

<table>
<thead>
<tr>
<th>Term</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC Generator</td>
<td>13</td>
</tr>
<tr>
<td>AC Motor Load</td>
<td>33</td>
</tr>
<tr>
<td>AC OK</td>
<td>55</td>
</tr>
<tr>
<td>AC Power Sources</td>
<td>13</td>
</tr>
<tr>
<td>AC Resistive Load</td>
<td>35</td>
</tr>
<tr>
<td>Active Power Factor Correction (PFC)</td>
<td>30</td>
</tr>
<tr>
<td>Active Power Sharing</td>
<td>62</td>
</tr>
<tr>
<td>Apparent Power</td>
<td>32</td>
</tr>
<tr>
<td>Baseplate Cooling</td>
<td>71</td>
</tr>
<tr>
<td>Batteries</td>
<td>19</td>
</tr>
<tr>
<td>Battery Charging</td>
<td>20-21</td>
</tr>
<tr>
<td>Boost Converter</td>
<td>9</td>
</tr>
<tr>
<td>Buck Converter</td>
<td>8</td>
</tr>
<tr>
<td>California Energy Commission (CEC)</td>
<td>105</td>
</tr>
<tr>
<td>CE Marking</td>
<td>97-98</td>
</tr>
<tr>
<td>Circuit Breakers</td>
<td>25/53</td>
</tr>
<tr>
<td>Class I Systems</td>
<td>83</td>
</tr>
<tr>
<td>Class II Systems</td>
<td>84</td>
</tr>
<tr>
<td>Common Mode Noise</td>
<td>92</td>
</tr>
<tr>
<td>Conducted Emissions</td>
<td>103</td>
</tr>
<tr>
<td>Conducted Immunity Phenomena</td>
<td>95</td>
</tr>
<tr>
<td>Conducted Noise</td>
<td>91/93</td>
</tr>
<tr>
<td>Constant Current Limit</td>
<td>53</td>
</tr>
<tr>
<td>Constant Power Limit</td>
<td>52</td>
</tr>
<tr>
<td>Control Interfaces</td>
<td>56</td>
</tr>
<tr>
<td>Controller Area Network (CAN) Bus</td>
<td>60</td>
</tr>
<tr>
<td>Convection Cooling</td>
<td>67</td>
</tr>
<tr>
<td>Cooling Power Modules</td>
<td>70</td>
</tr>
<tr>
<td>Cooling Power Supplies</td>
<td>67</td>
</tr>
<tr>
<td>Creative Mechanical Design</td>
<td>113</td>
</tr>
<tr>
<td>Cross Regulation</td>
<td>41</td>
</tr>
<tr>
<td>Crow-bar</td>
<td>54</td>
</tr>
<tr>
<td>Current Share</td>
<td>57</td>
</tr>
<tr>
<td>Custom Power</td>
<td>126-128</td>
</tr>
<tr>
<td>DC OK</td>
<td>56</td>
</tr>
<tr>
<td>DC Power Sources</td>
<td>18</td>
</tr>
<tr>
<td>Declaration of Conformity (DotC)</td>
<td>98</td>
</tr>
<tr>
<td>Defense and Avionics EMC Standards</td>
<td>98-103</td>
</tr>
<tr>
<td>Delta Connection</td>
<td>16</td>
</tr>
<tr>
<td>Differential Mode Noise</td>
<td>92</td>
</tr>
<tr>
<td>Digital Communication Interfaces</td>
<td>59</td>
</tr>
<tr>
<td>Digital Signals and Controls</td>
<td>123-125</td>
</tr>
<tr>
<td>Distributed Power Architecture</td>
<td>11</td>
</tr>
<tr>
<td>Earth Leakage Current</td>
<td>83/116</td>
</tr>
<tr>
<td>Earthing / Grounding</td>
<td>38</td>
</tr>
<tr>
<td>Earthing for Safety</td>
<td>39-40</td>
</tr>
<tr>
<td>Efficiency</td>
<td>67/117</td>
</tr>
<tr>
<td>Electrical Safety</td>
<td>82</td>
</tr>
<tr>
<td>Electromagnetic Compatibility (EMC)</td>
<td>91/119</td>
</tr>
<tr>
<td>EMC Filtering</td>
<td>94</td>
</tr>
<tr>
<td>Emissions</td>
<td>91</td>
</tr>
<tr>
<td>Enable</td>
<td>56</td>
</tr>
<tr>
<td>Energy Efficiency</td>
<td>107-108</td>
</tr>
<tr>
<td>Energy Independence & Security (EISA)</td>
<td>104</td>
</tr>
<tr>
<td>Energy Related Products (ErP)</td>
<td>98</td>
</tr>
<tr>
<td>Energy Star</td>
<td>105</td>
</tr>
<tr>
<td>Energy Star Products</td>
<td>108</td>
</tr>
<tr>
<td>ErP Directive</td>
<td>105</td>
</tr>
<tr>
<td>Factors Affecting Reliability</td>
<td>77</td>
</tr>
<tr>
<td>Failure Rate</td>
<td>75/78</td>
</tr>
<tr>
<td>Filter Selection</td>
<td>94</td>
</tr>
<tr>
<td>Fold-back Current Limit</td>
<td>53</td>
</tr>
<tr>
<td>Forced Cooling</td>
<td>67</td>
</tr>
<tr>
<td>Forward Converter</td>
<td>3</td>
</tr>
<tr>
<td>Frequency</td>
<td>14</td>
</tr>
<tr>
<td>Full Bridge Converter</td>
<td>6</td>
</tr>
<tr>
<td>Fuse Characteristics</td>
<td>24/53</td>
</tr>
<tr>
<td>Heat sink Calculations</td>
<td>73</td>
</tr>
<tr>
<td>Hiccup Mode</td>
<td>51</td>
</tr>
<tr>
<td>High Efficiency Power Supplies</td>
<td>109-114</td>
</tr>
<tr>
<td>High Peak Loads</td>
<td>43-44</td>
</tr>
<tr>
<td>Immunity</td>
<td>95-96</td>
</tr>
<tr>
<td>Inhibit</td>
<td>56</td>
</tr>
<tr>
<td>Input Characteristics</td>
<td>115</td>
</tr>
<tr>
<td>Input Current Protection</td>
<td>22</td>
</tr>
<tr>
<td>Input Voltage Protection</td>
<td>22/26</td>
</tr>
<tr>
<td>Inrush Current</td>
<td>23/116</td>
</tr>
<tr>
<td>Insulation</td>
<td>82</td>
</tr>
<tr>
<td>Insulation Types</td>
<td>89</td>
</tr>
<tr>
<td>Inter Integrated Circuit (IC) Bus</td>
<td>60</td>
</tr>
<tr>
<td>Isolated Fly-back Converter</td>
<td>2</td>
</tr>
<tr>
<td>Isolated Signals Output</td>
<td>59</td>
</tr>
<tr>
<td>Leakage Current</td>
<td>87</td>
</tr>
<tr>
<td>LED Drivers</td>
<td>47</td>
</tr>
<tr>
<td>Legislation</td>
<td>81</td>
</tr>
<tr>
<td>Line Regulation</td>
<td>41</td>
</tr>
<tr>
<td>Linear Power Supplies</td>
<td>10</td>
</tr>
<tr>
<td>Lithium</td>
<td>20</td>
</tr>
<tr>
<td>Load Regulation</td>
<td>41</td>
</tr>
<tr>
<td>Low System Power Factor</td>
<td>37</td>
</tr>
<tr>
<td>Low Voltage Directive (LVD)</td>
<td>97</td>
</tr>
<tr>
<td>Manufacturing Methods</td>
<td>79</td>
</tr>
<tr>
<td>Marketing Requirements</td>
<td>106</td>
</tr>
<tr>
<td>Matrix Configuration (LED’s)</td>
<td>48</td>
</tr>
<tr>
<td>Measurement Technique</td>
<td>106</td>
</tr>
</tbody>
</table>

THE XPERTS IN POWER
Index

<table>
<thead>
<tr>
<th>Term</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medical Power Supplies</td>
<td>120-122</td>
</tr>
<tr>
<td>Medical Safety</td>
<td>84-88</td>
</tr>
<tr>
<td>Methods of Measurements</td>
<td>93</td>
</tr>
<tr>
<td>Minimum Loads</td>
<td>117</td>
</tr>
<tr>
<td>MTBF</td>
<td>75</td>
</tr>
<tr>
<td>Multiple Channel Configuration (LED’s)</td>
<td>48</td>
</tr>
<tr>
<td>N+M Redundancy</td>
<td>63</td>
</tr>
<tr>
<td>Nickel Cadmium and Nickel Metal Hydride</td>
<td>19</td>
</tr>
<tr>
<td>No Load Power Consumption</td>
<td>104</td>
</tr>
<tr>
<td>Nominal Voltage</td>
<td>17</td>
</tr>
<tr>
<td>Open Collector Signals</td>
<td>59</td>
</tr>
<tr>
<td>Open Drain Signals</td>
<td>59</td>
</tr>
<tr>
<td>Opto-coupler Signal Output</td>
<td>59</td>
</tr>
<tr>
<td>Output Accuracy</td>
<td>117</td>
</tr>
<tr>
<td>Output Characteristics</td>
<td>115</td>
</tr>
<tr>
<td>Output Margining</td>
<td>58</td>
</tr>
<tr>
<td>Output Protection</td>
<td>51</td>
</tr>
<tr>
<td>Output Regulation</td>
<td>41</td>
</tr>
<tr>
<td>Output Ripple & Noise</td>
<td>117</td>
</tr>
<tr>
<td>Overload Protection</td>
<td>51</td>
</tr>
<tr>
<td>Over Voltage Protection (OVP)</td>
<td>54/55</td>
</tr>
<tr>
<td>Parallel Configuration (LED’s)</td>
<td>48</td>
</tr>
<tr>
<td>Parallel Operation</td>
<td>61</td>
</tr>
<tr>
<td>Passive Power Factor Correction (PFC)</td>
<td>29</td>
</tr>
<tr>
<td>PFC Boost Converter</td>
<td>10</td>
</tr>
<tr>
<td>Power Distribution</td>
<td>15</td>
</tr>
<tr>
<td>Power Fail (PF)</td>
<td>55</td>
</tr>
<tr>
<td>Power Good</td>
<td>56</td>
</tr>
<tr>
<td>Powering Light Emitting Diodes (LED’s)</td>
<td>45-49</td>
</tr>
<tr>
<td>Power Losses</td>
<td>64</td>
</tr>
<tr>
<td>Power Management (PM) Bus</td>
<td>60</td>
</tr>
<tr>
<td>Power Share</td>
<td>57</td>
</tr>
<tr>
<td>Power Sources</td>
<td>13-18</td>
</tr>
<tr>
<td>Power Supply Datasheets</td>
<td>115-119</td>
</tr>
<tr>
<td>Power Supply Safety</td>
<td>81</td>
</tr>
<tr>
<td>Prototype Testing</td>
<td>79</td>
</tr>
<tr>
<td>Push-Pull Converter</td>
<td>7</td>
</tr>
<tr>
<td>Radiated Immunity Phenomena</td>
<td>95</td>
</tr>
<tr>
<td>Radiated Noise</td>
<td>92/93</td>
</tr>
<tr>
<td>Reactive Power</td>
<td>32</td>
</tr>
<tr>
<td>Real and Apparent Power</td>
<td>31</td>
</tr>
<tr>
<td>Real Power</td>
<td>31</td>
</tr>
<tr>
<td>Redundant Operation</td>
<td>63</td>
</tr>
<tr>
<td>Relay Signal Output</td>
<td>59</td>
</tr>
<tr>
<td>Reliability</td>
<td>75</td>
</tr>
<tr>
<td>Reliability, Temperature & Cooling</td>
<td>118</td>
</tr>
<tr>
<td>Remote Sense</td>
<td>42/117</td>
</tr>
<tr>
<td>Reverse Polarity Protection</td>
<td>27</td>
</tr>
<tr>
<td>Ripple and Noise</td>
<td>49-50</td>
</tr>
<tr>
<td>Sealed Military Systems</td>
<td>114</td>
</tr>
<tr>
<td>Series Configuration (LED’s)</td>
<td>48</td>
</tr>
<tr>
<td>Series Operation</td>
<td>61</td>
</tr>
<tr>
<td>Service Life</td>
<td>76</td>
</tr>
<tr>
<td>Single-phase Voltages & Frequency</td>
<td>17</td>
</tr>
<tr>
<td>Single Wire Parallel</td>
<td>57</td>
</tr>
<tr>
<td>Sizing of Fuses & Circuit Breakers</td>
<td>24</td>
</tr>
<tr>
<td>Standards</td>
<td>92/95-96</td>
</tr>
<tr>
<td>Star or Wye Connection</td>
<td>16</td>
</tr>
<tr>
<td>Status Signals and Controls</td>
<td>55</td>
</tr>
<tr>
<td>Summary of Limits</td>
<td>105</td>
</tr>
<tr>
<td>Switch Mode Power Supplies (SMPS)</td>
<td>1</td>
</tr>
<tr>
<td>System Cooling Fan Selection</td>
<td>64-66</td>
</tr>
<tr>
<td>System Reliability</td>
<td>80</td>
</tr>
<tr>
<td>System Reset</td>
<td>56</td>
</tr>
<tr>
<td>Terminology</td>
<td>75</td>
</tr>
<tr>
<td>Three-phase AC</td>
<td>15</td>
</tr>
<tr>
<td>Topologies (Power Supply)</td>
<td>2</td>
</tr>
<tr>
<td>Topologies (Signals)</td>
<td>58</td>
</tr>
<tr>
<td>Transient Load Response</td>
<td>43</td>
</tr>
<tr>
<td>Trip and Restart Mode</td>
<td>51</td>
</tr>
<tr>
<td>TTL Compatible Signals</td>
<td>58</td>
</tr>
<tr>
<td>Two Transistor Forward Converter</td>
<td>4</td>
</tr>
<tr>
<td>Valve Regulated Lead Acid</td>
<td>19</td>
</tr>
<tr>
<td>Voltage Adjust</td>
<td>57</td>
</tr>
<tr>
<td>Voltage Programming</td>
<td>57</td>
</tr>
</tbody>
</table>
Open-frame & Enclosed
• 5-3000 Watts
• PCB or chassis mount
• Ultra-compact design
• Industrial & medical approvals

DC-DC Converters
• 1-200 Watts
• Regulated & unregulated versions
• 2:1 & 4:1 input ranges
• Industry standard SIL, DIL & SMD packages

External Power Supplies
• 8-250 Watts
• Energy Star, EISA & CEC compliant
• Industrial & medical approvals
• Compact high efficiency design

DIN Rail Mount
• 5-960 Watts
• Single or 3 phase input versions
• DC OK signal & LED indicator
• Rugged design for industrial applications

Visit our website to request a copy of our latest Power Supply Guide and see our complete line of power products.
North American HQ
XP Power
990 Benecia Avenue, Sunnyvale, CA 94085
Phone : +1 (408) 732-7777
Fax : +1 (408) 732-2002
Email : nasales@xppower.com

North American Sales Offices
Toll Free..........................+1 (800) 253-0490
Central Region..................+1 (972) 578-1530
Eastern Region..................+1 (973) 658-8001
Western Region..................+1 (408) 732-7777

European HQ
XP Power
Horseshoe Park, Pangbourne,
Berkshire, RG8 7JW
Phone : +44 (0)118 984 5515
Fax : +44 (0)118 984 3423
Email : eusales@xppower.com

European Sales Offices
Austria...........................+43 (0)56 448 90 80
Belgium..........................+33 (0)1 45 12 31 15
Denmark..........................+45 43 42 38 33
Finland..........................+358 5 555 567 01
France............................+33 (0)1 45 12 31 15
Germany..........................+49 (0)421 63 93 3 0
Italy..............................+39 039 2876027
Netherlands......................+31 20 367 00 75
Norway...........................+47 63 94 60 18
Sweden...........................+46 (0)8 555 367 00
Switzerland......................+41 (0)56 448 90 80
United Kingdom..................+44 (0)118 984 5515

Asian HQ
XP Power
401 Commonwealth Drive, Haw Par Technocentre, Lobby B #02-02
Singapore 149599
Phone : +65 6411 6900
Fax : +65 6741 8730
Email : apsales@xppower.com
Web : www.xppowerchina.com / www.xppower.com

Asian Sales Offices
Shanghai..........................+86 21 51389398
Singapore.........................+65 6411 6902

Distributors
Australia..........................+61 2 9809 5022 Amtex
Balkans..........................+36 1 583 7930 Elbacomp
Czech Rep........................+420 235 366 129 Vums Powerprag
Czech Rep........................+420 539 050 630 Koala Elektronik
Estonia............................+372 6228866 Elgerta
Greece.............................+30 210 240 1961 ADEM Electronics
Israel..............................+972 9 7498777 Appletec
Japan..............................+81 3 8826 7173 Belnex
Korea.............................+82 31 422 8882 Hanpower
Latvia.............................+371 67501005 Caro
Lithuania.........................+370 5 2652683 Elgerta
Poland............................+48 22 8627500 Gamma
Portugal..........................+34 93 263 33 54 Venco
Russia............................+7 (495)234 0636 Prosoft
Russia............................+7 (812)325 5115 Gamma
South Africa......................+27 11 453 1910 Vepac
Spain..............................+34 93 263 33 54 Venco
Taiwan...........................+886 3 3559642 Fullerton Power
Turkey............................+90 212 465 7199 EMPA

Global Catalog Distributors
Americas..........................Newark newark.com
Europe & Asia....................Farrell Farrell.com
China.............................Premier Electronics premierelectronics.com.cn

XP Power
www.xppower.com